
CSCI 382: Algorithms – Fall 2017 Brent Yorgey

Question 1. Suppose you are choosing between the following three algo-
rithms:

1. Algorithm A solves problems by dividing them into five subproblems of
half the size, recursively solving each subproblem, and then combining the
solutions in linear time.

2. Algorithm B solves problems of size n by recursively solving two sub-
problems of size n− 1 and then combining the solutions in constant time.

3. Algorithm C solves problems of size n by dividing them into nine sub-
problems of size n/3, recursively solving each subproblem, and then
combining the solutions in O(n2) time.

What are the running times of each of these algorithms (in asymptotic nota-
tion) and which would you choose?

Question 2 (K&T 5.1). You are interested in analyzing some hard-to-obtain
data from two separate databases. Each database contains n numerical
values—so there are 2n values total—and you may assume that no two values
are the same. You’d like to determine the median of this set of 2n values,
which we define to be the nth smallest value.

However, the only way you can access these values is through queries to
the databases. In a single query, you can specify a value k to one of the two
databases, and the chosen database will return the kth smallest value that it
contains. Since queries are expensive, you would like to compute the median
using as few queries as possible.

Give an algorithm that finds the median value using at most O(log n)
queries. If it makes things easier, you may assume that n is a power of two.

Question 3. Recall that the Fibonacci numbers Fn are defined recursively by

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2,

with the first few given by 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .
As you probably know, directly turning the definition of Fibonacci num-

bers into a recursive implementation is a terrible idea; the resulting algorithm
takes Θ(ϕn) time (where ϕ = (1 +

√
5)/2 ≈ 1.618 . . . ).

The usual iterative algorithm to repeatedly calculate the next Fibonacci
number from the previous two seems like it would take Θ(n) time to com-
pute Fn: it just loops from 1 to n and does one addition each loop, right?
Well. . . yes, it does one addition each loop, but we can’t really assume that
these additions take constant time, because the Fibonacci numbers involved
can get quite large! Let’s analyze the situation more carefully.

Homework 6 1 Due: 3:00pm, Monday, October 16



CSCI 382: Algorithms – Fall 2017 Brent Yorgey

(a) Recall from a previous homework that the size of the nth Fibonacci num-
ber Fn is Θ(ϕn). Given this fact, approximately how many bits (in terms
of Θ) are needed to represent Fn?

(b) Now suppose we implement the usual iterative algorithm as follows:
initialize an array F of size n, which can hold arbitrary-size integers.
Initialize F[0] = 0 and F[1] = 1. Then loop i from 2 to n, and at each
iteration, set F[i] ← F[i − 1] + F[i − 2]. Taking into account the time
needed to add integers of a given size, what is the running time of this
algorithm?

(c) We can do better! In addition to their definition, Fibonacci numbers satisfy
the following recurrences (you can just take my word for it):

F2n+1 = F2
n + F2

n+1

F2n = 2FnFn+1 − F2
n

For example, F7 = 13 = F2
3 + F2

4 = 22 + 32, and F8 = 21 =

2F4F5 − F2
4 = 2 · 3 · 5− 32.

Explain how to turn these recurrences into a recursive algorithm for com-
puting Fibonacci numbers.

3(c)(d) Analyze the running time of this algorithm. Be sure to include the time
needed to do any additions or multiplications. Assume we will use Karat-
suba’s algorithm for multiplication.

Question 4. An array A[1 . . . n] is said to have a majority element if more
than half of its entries are the same. Given an array, the task is to design an
efficient algorithm to tell whether the array has a majority element, and, if
so, to find that element. The only thing you may assume about the elements
of the array is that you can test whether two of them are equal (in constant
time). In particular, the elements of the array are not necessarily from some
ordered domain like the integers, and so there can be no comparisons of the
form A[i] > A[j]. You also may not assume that there is a hash function for
the elements, so they cannot be used as the keys of a dictionary/hash table.

(a) What is a brute-force algorithm for this problem? How long does it take to
run?

(b) Show how to solve this problem in O(n log n) time. Make sure to prove
4a

that your algorithm is correct (via induction) and give a recurrence relation
for the running time of your algorithm.

(c) (Extra credit) Can you give a linear-time algorithm?

4b

Homework 6 2 Due: 3:00pm, Monday, October 16

Besides appropriate base cases, break it into two different cases: one when n is even and one when n is odd.
Split the array into two equal-size subarrays. Would it help to know their majority elements?
Pair up A's elements.  For each pair, if the two elements are different, discard both of them; if they are the same, keep just one. Show that afterwards, there are at most n/2 elements left, and that they have a majority element if A does.

