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Weak induction

Theorem 0.1. For all n ≥ 1, the sum of the first n odd numbers is equal to
n2, that is,

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

For example, 1 + 3 + 5 + 7 = 16 = 42. Let’s give the statement
“1 + 3 + 5 + · · ·+ (2n− 1) = n2” a name: we’ll call it P(n). We want
to show that P(n) is true for all n ≥ 1. The idea is to use induction to
do this by showing

P(1) =⇒ P(2) =⇒ P(3) =⇒ P(4) =⇒ . . . ,

that is, we first show P(1) is true (the base case), and then we show
that each P(k) implies P(k + 1) (the inductive step). Just like domi-
noes, this “sets off a chain reaction” that proves P(n) for all n ≥ 1.

Proof. By (weak) induction on n.

• In the base case, when n = 1, the sum is just 1, and n2 = 12 = 1 as
well.

• In the inductive case, suppose P(k) is true for some particular
k ≥ 1, that is, suppose

1 + 3 + 5 + · · ·+ (2k− 1) = k2. (IH)

We must then show that P(k + 1) is also true, that is, that 1 + 3 +

IH is our induction hypothesis.

5 + · · ·+ (2(k + 1)− 1) = (k + 1)2. We can show this as follows:

1 + 3 + 5 + · · ·+ (2(k + 1)− 1)
= { algebra }

1 + 3 + 5 + · · ·+ (2k + 1)
= { listing one more term that was part of the . . . }

1 + 3 + 5 + · · ·+ (2k− 1) + (2k + 1)
= { IH }

k2 + (2k + 1)
= { factor }

(k + 1)2.

Notice how we make use of our as-
sumption (the induction hypothesis) to
rewrite 1 + · · ·+ (2k− 1) into k2.

So, we have shown that P(1) is true, and that whenever P(k) is true
then P(k + 1) is also true. Hence, by induction, P(n) is true for all
n ≥ 1. SDG
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Theorem 0.2. Let the Fibonacci numbers be defined as usual, with F0 = 0
and F1 = 1. Then for all n ≥ 0,

F0 + F1 + · · ·+ Fn = Fn+2 − 1.

FOO(n) =

if n = 0
then 0
else 2× FOO(n− 1) + 1

Theorem 0.3. For all n ≥ 0, FOO(n) = 2n − 1.

Strong induction

Theorem 0.4. For all n ≥ 0, Fn ≥ 0.

This theorem is a bit silly—it seems rather obviously true—but it’s
worthwhile seeing how to formally prove it by induction. Again, let
us give the name Q(n) to the statement “Fn ≥ 0”; we want to prove
that Q(n) holds for all n ≥ 0. However, this time we will not be able
to prove

Q(0) =⇒ Q(1) =⇒ Q(2) =⇒ . . .

as we did in the previous proof. The reason is that Q(k) by itself
is not enough to imply Q(k + 1): since each Fibonacci number is
defined in terms of the two previous Fibonacci numbers, we need to
know both Q(k − 1) and Q(k) in order to conclude Q(k + 1). That
is, if all we know is that Fk ≥ 0, we can’t say for sure that Fk+1 ≥ 0:
what if Fk−1 is negative? But if we know that Fk−1 and Fk are both
nonnegative, then Fk must be as well since it is a sum of nonnegative
things.

So, instead of using weak induction, where we suppose Q(k) and
use it to prove Q(k + 1), we will use strong induction, where we sup-
pose that all the Q(j) from Q(0) up to some Q(k) are true, and use
them to show Q(k + 1).

Proof. By (strong) induction on n.

• In the base cases, when n = 0, we have F0 = 0 ≥ 0, and when
n = 1, we have F1 = 1 ≥ 0. Notice that we need two base cases,

since the inductive step needs to refer
back to two previous Fibonacci num-
bers. Without two base cases to start,
the first inductive step would never get
off the ground.

• In the inductive case, suppose that for some k ≥ 0, we know that
Q(j) is true for all 0 ≤ j ≤ k. We must show that Q(k + 1) is true,
that is, that Fk+1 ≥ 0.
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Fk+1

= { definition }
Fk + Fk−1

≥ { IH twice, with j = k and j = k− 1 }
0 + 0

= { arithmetic }
0

SDG
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Theorem 0.5. For all n ≥ 0, Fn ≤ 2n−1.
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