
CSCI 382—Algorithms Fall 2017

Exam 2—D&C, DP, amortized analysis

In preparing your solutions to the exam, you are allowed to use any
sources including your textbook, other students and professors, previous
homeworks and solutions, or any sources on the Internet. You may ask me for
feedback on potential solutions, but I will not give you any hints. Of course, I
am also happy to answer general questions, go over homework problems, or
answer clarifying questions about exam problems.

The exam will take place in class on Friday, November 10 (MC Reynolds
108, 1:10-2:00pm). You are not allowed to bring any notes, textbooks, cal-
culators, or any other resources with you to the exam. Bring only something
to write with; I will provide a fresh copy of the exam, paper for writing your
solutions, and scratch paper.

As usual, to “design and analyze” an algorithm means to (a) describe the
algorithm, (b) prove/justify its correctness, and (c) analyze its asymptotic
running time. Full credit will only be given for the most efficient possible
algorithms. Algorithms must be clearly explained (using pseudocode if ap-
propriate) in sufficient detail that another student could take your description
and turn it into working code. You may freely cite any theorems proved in
class (without proof), or use algorithms covered in class as subroutines.

Midterm 2 1 1:10-2pm, Friday, 10 November, 2017



CSCI 382—Algorithms Fall 2017

Question 1. Given an array A[0 . . . n − 1] of integers, a wobbly pair is a
pair of integers in the array that are “out of order”: that is, where i < j but
A[i] > A[j]. For example, the array

A = [2,−1, 17, 10, 3, 8]

has 6 wobbly pairs, namely, (2,−1), (17, 10), (17, 3), (17, 8), (10, 3), and
(10, 8). Put another way, if you imagine each number “looking” down the
array to its right, there is a wobbly pair each time a number can “see” another
number which is smaller than it. The number of wobbly pairs is in some
sense a measure of how far away A is from being sorted; in fact, the number
of wobbly pairs is exactly the minimum number of adjacent swaps needed to
sort the array, and a sorted array has zero wobbly pairs. In the example, we
could first swap 17 and 10, then 17 and 3, then 17 and 8, taking three swaps
to move 17 to the end; then two more swaps would be needed to move 10
past 3 and 8; then one last swap would put 2 and −1 in the correct order, for a
total of six adjacent swaps.

(a) Describe, and analyze the running time of, a simple brute-force algorithm
to compute the number of wobbly pairs in a given array.

(b) Now design and analyze a more efficient algorithm to compute the number
of wobbly pairs in a given array.

Midterm 2 2 1:10-2pm, Friday, 10 November, 2017



CSCI 382—Algorithms Fall 2017

Question 2. You are given a set of n widgets and a positive integer G. Each
widget also has a froob fi (a positive real number) and a grump gi (a positive
integer). As you can tell from their names, froob is good and grump is bad.
Your goal is to pick a subset of the widgets such that their total froob is as big
as possible (yay!), but subject to the constraint that their total grump must be
≤ G (you can only deal with so much grump).

(a) Design and analyze an O(nG)-time algorithm to find an optimal subset,
given as input the number of widgets n, the maximum grump G, and two
size-n arrays containing the froob and grump values for the widgets. Be
sure your algorithm finds not just the maximum possible froob but an
actual subset of widgets which has that total froob.

(b) Explain (one sentence should be sufficient) why the problem would be
much harder if the grump values were allowed to be positive real numbers
rather than just positive integers.

Midterm 2 3 1:10-2pm, Friday, 10 November, 2017



CSCI 382—Algorithms Fall 2017

Question 3 is also courtesy of Jeff Erickson,
http://jeffe.cs.illinois.edu/
teaching/algorithms/hwex/f13/
midterm2.pdf.

Question 3. Suppose you are maintaining an array X[0 . . . n − 1] of n
counters, each counter taking a value from the set {0, 1, 2}. The following
algorithm increments one of the counters; if the counter would overflow, the
algorithm instead resets it to 0 and recursively increments its two neighbors.
We think of the array as being circular, so counters 0 and n − 1 are also
neighbors; this is why lines 5 and 6 of the code below use mod to make
the indices wrap around.

Algorithm 1: INCREMENT(i)
1: if X[i] < 2 then
2: X[i]← X[i] + 1
3: else
4: X[i]← 0
5: INCREMENT((i− 1) mod n)
6: INCREMENT((i + 1) mod n)
7: end if

For example, if X = [0, 0, 0] then INCREMENT(1) results in X =

[0, 1, 0]; if X = [0, 2, 0] then INCREMENT(1) results in X = [1, 0, 1]; if
X = [2, 1, 0] then INCREMENT(0) results in X = [0, 2, 1].

(a) Suppose n = 5 and X = [2, 2, 2, 2, 2]. What does X contain after we call
INCREMENT(3)? (You do not need to show any work or intermediate
steps, just the final contents of X.)

(b) Suppose all counters are initially 0. Prove that INCREMENT runs in
Θ(1) amortized time. Assume as the cost model that changing any X[i]
costs 1 unit. Caution: you may not assume that INCREMENT is called
repeatedly on the same location! Your proof should work for any sequence
of INCREMENT calls, no matter which indices they increment. (Hint:
use the accounting method!)

Midterm 2 4 1:10-2pm, Friday, 10 November, 2017

http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f13/midterm2.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f13/midterm2.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f13/midterm2.pdf

