
Algorithms: 2D Dynamic Programming

Model 1: Some sets

A = {1, 2, 3, 5, 7}
B = {4, 16, 19, 23, 25, 72, 103}
C = {3, 34, 4, 12, 5, 2, 99}

1 For each number below, say whether each set has some subset
which adds up to the given number. For example, A and C have
subsets which add up to 7 ({7} and {5, 2} respectively), but B does
not.

(a) 149

(b) 148

(c) 9

(d) 16

In general, consider the following problem, called the Subset Sum

problem:

• Input:

– a set {x1, . . . , xn} of n positive integers, and Yes, the first element is x1, not x0. This
is a deliberate choice which will come
in handy later.– a positive integer S.

• Output: is there a subset of {x1, . . . , xn} whose sum is exactly S?

2 Describe a brute-force algorithm for solving this problem.

3 What is the running time of your brute-force algorithm?

Let’s see how to attack this problem using dynamic programming.



algorithms: 2d dynamic programming 2

Step 1: Break the problem into subproblems and make a recur-
rence.

• We can make the problem simpler by restricting ourselves to only
using some of the xi. For example, a subproblem might look like
“Can we find a subset of only {x1, . . . , xk} that adds up to S?” for
some k ≤ n.

• However, by itself this doesn’t help: just knowing whether we can
add up to S using only x1, . . . , xk doesn’t tell us whether we can
add up to S using x1, . . . , xn. In particular, in order to add up to
S we might need to use some of the elements from x1, . . . , xk in
addition to some of the other elements. We can fix this by general-
izing along another dimension as well: we need to know whether
we can add up not just to S itself, but to any sum 0 ≤ s ≤ S. That
is, a subproblem now looks like “Can we find a subset of only
{x1, . . . , xk} that adds up to s?” for some k ≤ n and s ≤ S.

Define canAddTo(k, s) to be a true or false value which is the an-
swer to the question, “Is there a subset of {x1, . . . , xk} which adds up
to exactly s?”

4 Fill in base cases for canAddTo:

• canAddTo(k, 0) = for all k ≥ 0,

because .

• canAddTo(0, s) = for all s > 0,

because .

5 Now consider canAddTo(k, s) in the general case, when k > 0 and
s > 0. That is, we are trying to find whether we can add up to
exactly s using only some subset of x1, . . . , xk. In order to break
this problem down into subproblems, we would need to decrease k
and/or s. Fill in the following steps.

• If , then we definitely cannot use xk as part of a

subset adding to s, because it is too .

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: 2d dynamic programming 3

In this case, we would get the same result if we only allowed
ourselves to use {x1, . . . , xk−1}, that is, canAddTo(k, s) is the

same as .

• Otherwise, we have two choices: we can try to use as
part of our subset or not. If we don’t use it, it is the same as
the previous case. If we do use it, then in order to complete the

subset we have to make a subset using only

which adds up to .

6 Use your reasoning above to write down a complete recursive
definition of canAddTo.

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: 2d dynamic programming 4

Step 2: Memoize.

7 Explain why it would be extremely slow to directly evaluate
canAddTo(n, S) as a recursive function.

8 canAddTo takes a pair of values as input. How many possible such
pairs are there? Of course there are infinitely many

pairs of numbers; this question is really
asking about how many inputs to
recursive calls we might possibly see
after starting by calling canAddTo(n, S).

9 If we wanted to memoize the results of canAddTo by storing the
output corresponding to each possible input, what data structure
should we use? Draw a picture.

10 How big is this data structure?

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: 2d dynamic programming 5

11 In what order can we fill in the data structure, so that we never try
to fill in a value before filling in other values it depends on?

12 How long does it take to fill in each value?

13 Therefore, what is the running time of this dynamic programming
algorithm?

14 Is this faster than your answer to Question 3? Hint: this is a trick question.

15 Write some code (using either pseudocode or a language of your
choice) to compute canAddTo(n, S) using the approach outlined
here.

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Model 1: Some sets

