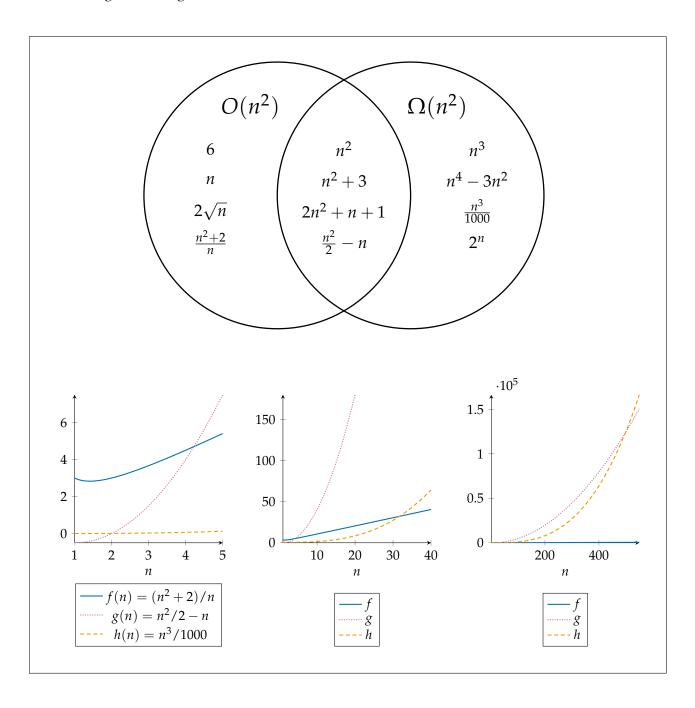
Model 1: Big-O and Big- Ω



Critical Thinking Questions I

1 Based on the Venn diagram in the model, say whether each function is $O(n^2)$, $\Omega(n^2)$, or both.

Learning objective: Students will describe asymptotic behavior of functions using big-O, big- Θ , and big- Ω notation.

- (a) $2\sqrt{n}$
- (b) n^3
- (c) $2n^2 + n + 1$
- (d) 2^n

Consider the functions

$$f(n) = (n^2 + 2)/n$$
,
 $g(n) = n^2/2 - n$, and
 $h(n) = n^3/1000$

for which graphs are shown in the model.

- 2 On each of the following intervals, list the functions f, g, and hfrom largest to smallest.
- (a) $n \in [2, 4]$
- (b) $n \in [5,30]$
- (c) $n \in [35, 450]$
- 3 Which function is largest, and which the smallest, at n = 600?
- 4 Does this relative order continue for all $n \ge 600$, or do the functions ever change places again? Justify your answer.

Say whether you think each of the following statements is true or false. Give a short justification for each answer.

- 6 If f(n) is $O(n^2)$, then it has n^2 in its definition.
- 7 If f(n) has n^2 in its definition, then f(n) is $O(n^2)$.
- 8 If f(n) is both $O(n^2)$ and $\Omega(n^2)$, then it has n^2 in its definition.
- 9 If $f(n) \le n^2$ for all $n \ge 0$, then f(n) is $O(n^2)$.
- 10 If f(n) is $O(n^2)$, then $f(n) \le n^2$ for all $n \ge 0$.
- 11 If $f(n) \le n^2$ for all n that are sufficiently large, then f(n) is $O(n^2)$.
- 12 If f(n) is $O(n^2)$ and g(n) is $\Omega(n^2)$, then $f(n) \le g(n)$ for all $n \ge 0$.
- 13 Every function f(n) is either $O(n^2)$ or $\Omega(n^2)$ (or both).

14 Using one or more complete English sentences and appropriate mathematical formalism, propose a definition of $O(n^2)$ by completing the following statement.

A function f(n) is $O(n^2)$ if and only if...

Model 2: Definitions

Definition 1 (Big-O). T(n) is O(g(n)) if there exist a real number c>0 and an integer $n_0\geq 0$ such that for all $n \ge n_0$,

$$T(n) \le c \cdot g(n)$$
.

Definition 2 (Big-Omega). T(n) is $\Omega(g(n))$ if there exist a real number c>0 and an integer $n_0\geq$ 0 such that for all $n \ge n_0$,

$$T(n) \ge c \cdot g(n)$$
.

Definition 3 (Big-Theta). T(n) is $\Theta(g(n))$ if it is both O(g(n)) and $\Omega(g(n))$.

Sample proof that $n^2 + 2n$ is $\Theta(n^2)$:

- First, $n^2 + 2n \le n^2 + 2n^2 = 3n^2$ for $n \ge 1$ (since $n^2 \ge n$ when $n \ge 1$). Hence $n^2 + 2n$ is $O(n^2)$ according to the definition if we pick c = 3 and $n_0 = 1$.
- Next, $n^2 + 2n \ge n^2$ as long as $n \ge 0$. So by picking c = 1 and $n_0 = 0$, we see that $n^2 + 2n$ is also $\Omega(n^2)$.
- 15 Compare our class consensus definition of $O(n^2)$ with the formal definition of O(g(n)) above. List one way in which they are similar, and one way in which they are different.

- 16 Consider the following three more intuitive phrasings. Match each one with its corresponding definition.
 - T(n) is eventually bounded below by some constant multiple of g(n).
 - T(n) is eventually bounded between two constant multiples of
 - T(n) is eventually bounded above by some constant multiple of g(n).
- 17 Which part of the definitions corresponds to the word "eventually" in Question 16?

- 18 In the sample proof that $n^2 + 2n$ is $O(n^2)$, the given values of c and n_0 are not the only values that would work. Given an alternate proof that $n^2 + 2n$ is $O(n^2)$ using different values of c and n_0 .
- 19 Prove that f(n) = 20n 1 is $O(n^2)$ by applying the formal definition.
- 20 Prove that $f(n) = n^3/10$ is $\Omega(n^2)$ by applying the formal definition.
- 21 Prove that $f(n) = 3n^2 n + 1$ is $\Theta(n^2)$ by applying the formal definition.