
Algorithms: Applications of BFS

Suppose we have a graph G = (V, E). A given graph could have few
edges, or lots of edges, or anything in between. Let’s think about the
range of possible relationships between V and E.

1 How big can |E| be, relative to |V|?

(a) The smallest possible value of |E| is .

(b) |E| is O
()

because .

(c) When G is a tree, |E| is Θ
()

because .

Now, recall from last class that we showed breadth-first search
(BFS) can be implemented to run in Θ(|E|) time.

2 In terms of Θ, how fast does BFS run, as a function of |V|, when G
is a tree?

3 How fast does BFS run, as a function of |V|, when G is very dense,
i.e. it contains some constant fraction (say, half) of all possible
edges?

algorithms: applications of bfs 2

A first application of BFS

4 Describe an algorithm to find the connected components of a
graph G.

Input: a graph G = (V, E)
Output: a set of sets of vertices, Set<Set<Vertex>>, where each
set contains the vertices in some (maximal) connected component.
That is, all the vertices within each set should be connected; no
vertex should be connected to vertices in any other sets; and every
vertex in V should be contained in exactly one of the sets.

For example, given the graph below, the algorithm should return
{{D, E, F}, {C, B, A}, {G}, {H}}.

H

G

F

E

D C

B

A

Describe your algorithm (using informal prose or pseudocode) and
analyze its asymptotic running time.

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: applications of bfs 3

A second application of BFS

Model 1: Directed graphs

See the board for examples of directed graphs.

5 What is the difference between directed graphs and the (undi-
rected) graphs we saw on a previous activity?

6 The previous activity defined graphs as consisting of a set V of
vertices and a set E of edges, where each edge is a set of two ver-
tices. How would you modify this definition to allow for directed
graphs?

7 For each of the following graph terms/concepts, say whether you
think its definition needs to be modified for directed graphs; if so,
say what the new definition should be.

1 vertex

2 degree

3 path

4 cycle

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: applications of bfs 4

8 What (if anything) about our implementation of BFS needs to be
modified for BFS to work sensibly on directed graphs?

Definition 1. A directed graph G = (V, E) is strongly connected if for
any two vertices u, v ∈ V there is a (directed) path from u to v, and
also from v to u.

9 Describe a brute force algorithm for determining whether a given
directed graph G is strongly connected.

10 Analyze the running time of your algorithm in terms of Θ.

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: applications of bfs 5

Let’s see if we can do better!

Theorem 2. A directed graph G = (V, E) is strongly connected if and only
if for any vertex s ∈ V, every other vertex in G is mutually reachable with
s (that is, for each v ∈ V there is a directed path from s to v and another
directed path from v to s).

11 In order to prove this “if and only if” statement, we must prove

both

and .

Hint: draw a picture!
Proof.

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

algorithms: applications of bfs 6

Definition 3. Given a directed graph G, its reverse graph Grev is the
graph with the same vertices and all edges reversed.

Theorem 4. A directed graph G = (V, E) is strongly connected if and only
if given any s ∈ V, all vertices are reachable from s in G, and all vertices are
reachable from s in Grev.

Hint: what is the relationship between
this theorem and Theorem 2?Proof.

12 Based on the above theorem, describe an algorithm to determine
whether a given directed graph G = (V, E) is strongly connected,
and analyze its running time.

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	A first application of BFS
	A second application of BFS
	Model 1: Directed graphs

