
Algorithms Lecture Notes

Brent Yorgey

October 19, 2019

These are my lecture notes for CSCI 280 / CSCI 382, Algorithms, at Hendrix
College. Much of the basis for the course (including some of the lecture notes
themselves) came from a similar course taught by Brent Heeringa at Williams
College.

There are two “tracks”: a “traditional” lecture-based version that I taught
in S’16 and S’17, and a revamped version which is a hybrid between lecture and
POGIL activities (http://pogil.org). I have left them both here for posterity
and also because I may move material back and forth between them in the
future. Sections marked with (L*) were used only in the lecture-based version
of the course; sections marked with (P*) only in the POGIL version; sections
marked with (L/P) are used in both, but presented via a POGIL activity rather
than lecture; sections marked (L) are presented via lecture in both. Contact me
if you would like to receive the latest versions of the POGIL activities I have
developed.

1

1 (P*) Introduction to POGIL and Algorithms

2

2 (P*) GCD analysis

3

3 (P*) Proving the Euclidean Algorithm correct

Here are the two algorithms we considered last time. Throughout the following
we assume that a, b ≥ 0.

GCDI(a,b) =
while (b 6= 0) and (a 6= 0)

if a ≤ b
then b← b mod a
else a← a mod b

if a = 0 then return b else return a

GCDR(a,b) =
if b = 0

then a
else GCDR(b, a mod b)

How can we formally prove that these algorithms correctly compute the GCD
of two nonnegative integers?

In proving either of these algorithms (or any algorithm) correct we really
have two things to prove:

1. The algorithm always terminates (stops in a finite amount of time) for
any inputs.

2. If the algorithm does terminate, it returns the correct answer.

Sometimes the fact that the algorithm terminates is obvious; but in this case it
does require some proof. It often makes things simpler to break up a proof of
correctness in this way.

We’ll start with the recursive version; it’s typically easier to prove things
about recursive algorithms than iterative ones.

Theorem 3.1. GCDR(a, b) always terminates.

Proof. By (strong) induction on b.

• If b = 0, GCDR(a, b) = a.

• Otherwise, if b > 0, GCDR makes a recursive call to GCDR(b, a mod b).
This is well-defined since b 6= 0. By definition 0 ≤ a mod b < b, so the
second argument to the recursive call is strictly smaller than b. Hence, by
the induction hypothesis, that recursive call must terminate.

Put more informally, the second argument gets strictly smaller with every
recursive call. It cannot keep getting smaller forever; it must eventually
reach the base case of 0 and stop. SDG

Now, in order to prove that GCDR is correct, we first need a small lemma
about the mathematical gcd function. Note carefully the difference between
GCDR, GCDI, and gcd: the former two refer to the particular algorithms defined
by the code above, whereas gcd refers to the abstract mathematical function
defined in terms of divisors and so on. gcd is a specification whereas GCDR
and GCDI are implementations; our job is to prove that they actually produce
identical results, that is, that the implementations match the specification.

4

Lemma 3.2. If b 6= 0 then gcd(a, b) = gcd(a mod b, b).

Proof. The proof uses some basic number theory. I typically skip it since we’re
more interested in the algorithmic aspects of the proof. However, the proof is
included here in the notes for completeness.

It suffices to prove that for any d > 0, d evenly divides both a and b if and
only if it evenly divides (a mod b) and b. Then (a, b) and (a mod b, b) have the
same set of common divisors, and hence the same greatest common divisor.

Note that a mod b = a− kb for some constant k. If d divides a and b then it
also divides kb and therefore a− kb. Conversely, suppose some e divides both b
and a−kb. Then e divides kb, and hence it divides the sum (a−kb)+kb = a. SDG

Theorem 3.3. GCDR(a, b) = gcd(a, b).

Proof. By induction on b.

• In the base case, when b = 0, GCDR(a, 0) = a, which is indeed the defini-
tion of gcd(a, 0).

• Now suppose b > 0 and that for all a, GCDR(a, b′) = gcd(a, b′) when-
ever b′ < b. In this case GCDR(a, b) = GCDR(b, a mod b). We know
a mod b < b, so the induction hypothesis applies (note in particular that
the IH holds for any a, and in particular we can pick b as our “a”).
We concude that GCDR(a, b) = GCDR(b, a mod b) = gcd(b, a mod b) =
gcd(a mod b, b) = gcd(a, b), where the last two steps follow from the fact
that gcd is symmetric (easily deduced from its definition) and the previous
lemma. SDG

Now we’ll prove the iterative algorithm correct, beginning with termination.

Theorem 3.4. GCDI(a, b) always terminates.

Proof. Each time through the loop, either a gets smaller and b stays the same, or
b gets smaller and a stays the same: if the loop starts out with a ≤ b, then b gets
smaller, since b mod a < a ≤ b. Otherwise a gets smaller, since a mod b < b < a.
Since neither ever gets bigger and one gets strictly smaller every loop iteration,
one of them must eventually hit 0, which will stop the loop.1 SDG

Theorem 3.5. GCDI(a, b) = gcd(a, b).

Proof. Suppose we initially call GCDI(m,n). Then we claim the following loop
invariant : each time right before doing the loop check again, gcd(a, b) = gcd(m,n).
That is, the gcd of the current values of a and b is always equal to the gcd of
the original arguments to GCDI.

We prove this by induction on the number of loop executions.

• In the base case, before the loop has executed at all, a and b are equal to
the original arguments to GCDI, hence the invariant holds trivially.

1Technically this is a proof by (well-founded) induction on pairs N2 under the well-founded
relation (a, b) < (x, y) if a < x and b = y or a = x and b < y.

5

• Otherwise, suppose the invariant held after n loop iterations; we must
show it will still hold after one more loop iteration. But this follows from
Lemma 3.2.

Finally, after the loop ends, we will have either a = 0 or b = 0, and we can
see that we will return wichever one is nonzero. This correctly returns the gcd
of a and b since gcd(a, 0) = a. But because of the loop invariant we know that
gcd(a, b) = gcd(m,n), hence GCDI(m,n) = gcd(m,n). SDG

6

4 (L*) Stable matchings and Gale-Shapley

Administrivia

• Show course webpage.

• Weekly HW, due Fri 4pm. (See short HW due this Friday!!) Solutions
handed out Wednesday.

• Collaboration but separate write-up. I take academic integrity very seri-
ously.

• 2 midterms and a final—given problems ahead of time, come in and write
solutions.

• Explain office hours, youcanbook.me, email habits.

Course goals

What is this course all about? Two main things:

1. Solving problems: learning techniques, skills, methods, common problems
and solutions, etc.

2. Proving that our solutions are good (correct, fast, low memory, etc.)

Connecting theory and practice!

Stable matching problem

Input:

• n doctors A = {a1, . . . , an}

• n hospitals with a slot for a resident B = {b1, . . . , bn}

• Rank lists: each doctor has a list of all hospitals in preferred order, and
each hospital has a list of doctors.

Example:

• Doctors x, y, z

• Hospitals MGH, Mayo, ACH

• Rank lists:

x MGH Mayo ACH
y ACH MGH Mayo
z Mayo MGH ACH

MGH z x y
Mayo y x z
ACH y z x

7

Goal: match up doctors and hospitals so no one wants to swap. That is, for
any given doctor d and hospital h, either:

• d and h are matched, or

• d prefers their current hospital over h, or

• h prefers their current doctor over d.

So d and h don’t want to both abandon their current match and switch to each
other. This kind of matching where no one wants to swap is called stable.

• Example of stable matching: x—MGH, y—ACH, z—Mayo.

• Example of unstable matching: x—Mayo, y—MGH, z—ACH. Note that
x prefers MGH over Mayo, and MGH prefers x over y.

How long would a brute-force solution take?

• List every possible matching (n!)

• Check each matching to see if it is stable

– Check every pair of doctor & hospital (n2)

So something like O(n2n!), yikes.

The Gale-Shapley algorithm

Historically this has been called the stable marriage problem, phrased in terms
of men & women pairing off. Studied by Gale and Shapley (1962), who gave
the following algorithm. This algorithm (a variant of it) is actually used by the
National Resident Matching Program to match residents and hospitals.

Algorithm 1 Propose-Reject - finds a stable matching

1: Initialize each proposer p and accepter a as Free
2: while there is a free proposer who hasn’t proposed to every accepter do
3: Choose a free proposer p
4: a ← first accepter on p’s list to whom p has not yet proposed
5: if a is Free then
6: p and a are Matched (for now)
7: else if a prefers p to their current match p′ then
8: p and a are Matched and p′ is Free
9: else

10: a rejects p and p remains Free

Pick two volunteers to be algorithm masters—job is to make sure algorithm
is being correctly followed. Then split remaining students into 2 equal groups
(add myself if an odd number), doctors and hospitals.

8

• Hospitals will have a letter. Have each doctor make up a ranking of
hospital letters.

• Have each hospital make up a ranking of numbers.

• Now randomly assign letters and numbers. Write assignments up on the
board so everyone can write down names next to their ranking.

• On your piece of paper:

– Your ranking

– Your identity

– Who you are currently matched with

– Doctors: remember to cross off hospitals you have already proposed
to

9

5 (L*) Proof of Gale-Shapley correctness

A lot of what we will do in this course revolves around creating formal math-
ematical models of problems and giving careful, formal mathematical proofs.
Today we will describe a formal model of the stable matching problem and give
a formal proof of the correctness of the Gale-Shapley algorithm.

We have a set of proposers P = {p1, . . . , pn} and a set of accepters A =
{a1, . . . , an}. Each proposer pi has a ranking of accepters, which is a list of all
the A in some particular order. We say p prefers ai over aj when ai occurs
earlier in p’s list than aj . Similarly, each ai has a ranking of proposers.

Definition 5.1. A matching is a subset M ⊆ P ×A (a relation) such that each
p ∈ P appears in at most one element of M , and similarly for each a ∈ A.

Definition 5.2. A perfect matching is a matching M in which each element of
P occurs exactly once, and similarly for each element of A.

Definition 5.3. A stable matching is a perfect matching M such that for each
a ∈ A and p ∈ P , at least one of the following holds:

• (a, p) ∈M

• (a, p′) ∈M and a prefers p′ over p

• (a′, p) ∈M and p prefers a′ over a.

Let’s prove that the Gale-Shapley algorithm always produces a stable match-
ing. We actually have to prove several things: first, that the algorithm termi-
nates, and second, that when it terminates it will result in a matching that is
perfect and stable. NOTE: there are a lot of details missing from the pseu-
docode! Pseudocode allows us to talk about the correctness of an algorithm but
not its efficiency. We’ll get to that next class.

We start by making a few simple observations.

Observation 1. Once an accepter becomes Matched, they never become
Free again.

Proof: lines 6, 8, 10 never make accepters Free.

Observation 2. An accepter ends up MATCHED to their most preferred
proposer who proposed to them.

Proof: accepters only ever trade up.

Observation 3. No one is ever MATCHED to more than one other at a time.

Now we prove that the algorithm terminates. In fact:

Claim 5.4. The Gale-Shapley algorithm terminates after at most n2 iterations.

10

Proof. Generally, we need a measure of progress that changes monotonically
every iteration (i.e. always goes up or always goes down), along with a limit
that it can’t go above/below. In this case the number of, say, free proposers
doesn’t work, since it might not go up. Number of free accepters doesn’t work
either. Instead, consider the number of pairs (p, a) where p has proposed to a:
in each round, some p proposes to some a they have never proposed to, so this
set always increases by 1 each round. The total number of such pairs is n2, so
that is the maximum number of iterations of the loop. SDG

Claim 5.5. The Gale-Shapley algorithm returns a perfect matching.

Proof. By contradiction. By Observation 3, it definitely returns a matching, so
suppose the matching is not perfect. Then there must be some a ∈ A and p ∈ P
which are both FREE. We must derive a contradiction.

By Observation 1, a must have been FREE for the entire time. The only
way the algorithm could terminate with p FREE is if p proposed to all A; hence
p must have proposed to a at some point. But a would have been FREE then
and hence would have been matched; this is a contradiction. SDG

Claim 5.6. The perfect matching returned is stable.

Proof. By contradiction. Suppose it returns a matching which is perfect but
unstable. Then there exist some matched pairs (p1, a1) and (p2, a2) where p1
and a2 prefer each other over their current matches. Since proposers always
propose in order of preference, p1 must have proposed to a2 at some point
before proposing to a1. But by Observation 2, accepters always end up with
the most preferred out of those who proposed to them. This is a contradiction
since we assumed a2 ended up with p2 even though p1, whom they prefer, also
proposed to them. SDG

11

6 (L*) Data representation for Gale-Shapley

[Should have plenty of time, get them to figure out some of this on their own.
Project G-S algorithm on the screen again.]

Note that pseudocode lets us reason about correctness, but not about time
complexity ! Does the G-S algorithm run faster than brute force (O(n!n2))? We
proved the number of loop iterations has n2 as an upper bound. So, is G-S
O(n2)? Not necessarily! It depends on how long each loop iteration takes. We
have to talk concretely about the actual data structures used to implement the
algorithm.

First, how to represent the input? Give P , A ID numbers from 1 through
n. (Practical note: in practice we can actually use dictionaries/maps instead
of arrays, and directly index by names or something like that.) Use an n × n
matrix A[i, j] to represent A preferences: A[i, j] = p means p is ai’s jth choice.
Similarly use an n × n matrix P . (Draw example preference matrices on the
board.)

Now, let’s go through each operation and figure out how to make it as fast
as we can.

• Identify the next FREE p? (Have them discuss in small groups.) We don’t
want to iterate over all P and find one that is free—that would be O(n).
(Ask them for input.) Instead, we can use a linked list/queue/stack of
free proposers—any container with O(1) add and remove will do. (What’s
the difference? Different choices of data structure will result in different
orders of proposers getting to propose, which you might think could result
in different matchings. Actually, it turns out the algorithm will always
return the same matching no matter what order for proposers is chosen!
Extra credit challenge: prove this.) Pull off the next one in O(1). If they
remain FREE (or if another proposer becomes FREE) add them in O(1).

• For a given p, how do we get next preferred a not yet proposed to? (Again
have them discuss in small groups.) We don’t want to iterate down their
preference list and check whether each one has already been proposed to
(O(n) again). Keep a length-n array next . next [i] = j means pi should
next propose to their jth choice P [i, j]. Update next [i] by incrementing
after each proposal.

• How do we keep track of who is currently matched? Array matched [i] = j
means ai is matched to pj . matched [i] = 0 means ai is FREE.

• How do we check the preferences of an a that is proposed to? We don’t
want to scan through a’s whole preference list looking for their current
match and new proposer. Are we stuck? Actually we can do something
clever here: keep an inverted index of the matrix A which is another n×n
matrix rank , defined so that rank [i, j] is the rank of pj in the preference
list of ai. For example, if a2’s top choice is p3 then rank [2, 3] = 1. Across
each row, we have switched values and indices. Now, to see whether ai

12

prefers their current match pj (which we can find by looking in matched [i])
or the new proposer pk, we can just compare the values of rank [i, j] and
rank [i, k] in O(1) time.

But how do we compute rank in the first place? We can build it up in
O(n2) time by iterating over A. But we only have to do this once, at the
very beginning.

Therefore we spend O(n2) time precomputing rank , and then execute a loop
at most O(n2) times doing a constant amount of work each iteration, so the
whole algorithm runs in O(n2) +O(n2) = O(n2) time.

13

7 (L/P) Asymptotic analysis I

Motivation

Why should we examine problems analytically?

1. The analysis is independent of the algorithm implementation, the language
in which the program is implemented, and the architecture in which the
program is run. We insulate ourselves to all these variables.

2. Theoretically efficient almost always implies practical efficiency.

Why perform worst-case analysis?

1. Worst-case analysis captures efficiency reasonably well in practice. There
are exceptions (like Quicksort and the Simplex method for linear program-
ming).

2. Worst-case is a real guarantee.

3. Average-case analysis is hard to nail down: You often don’t known any-
thing about the distribution of inputs (although randomized algorithms
can help).

What does efficient mean?

1. Theoretically, we take efficient to mean runs in time polynomial in the size
of the input but practical efficiency is usually bounded above somewhere
between O(n log n) to O(n3) depending on the application.

Why should we use asymptotic analysis?

1. Precise bounds are difficult.

2. Precise bounds on runtime are meaningless since they always depend on
the choice of language, architecture, library, etc.

3. Equivalency up to a constant factor is often the right level of detail when
making algorithmic comparisons.

14

Definitions

From now on, n ≥ 0 and T (n) ≥ 0.

Definition 7.1 (Big-O). T (n) is O(g(n)) iff ∃c > 0 and n0 ≥ 0 such that for
all n ≥ n0, T (n) ≤ c · g(n).

Draw a couple pictures. One with T (n) being Θ(g(n)), one with it being
much less. Draw g(n), then a multiple of g(n), then have T (n) bounce around
a bit before falling in below the multiple; draw in n0.

Example.

T (n) = 3n2 + 17n+ 8

≤ 3n2 + 17n2 + 8n2 (n ≥ 1)

= 28n2

So choose c = 28, n0 = 1, then T (n) is O(n2). (In fact we could also pick c = 4
along with a bigger n0.)

Note T (n) is also O(n3), and so on. Big-O is like less than or equal to.

Definition 7.2 (Big-Omega). T (n) is Ω(g(n)) iff ∃c > 0 and n0 ≥ 0 such that
for all n ≥ n0, T (n) ≥ c · g(n). (greater-than-or-equal)

Definition 7.3 (Big-Theta). T (n) is Θ(g(n)) iff T (n) is O(g(n)) and Ω(g(n)).
(equal)

A lot of the time people use big-O when what they really mean is Θ. In
this class we will be very careful to use them properly. It’s useful to have all of
them at our disposal. For some problems we know exactly how fast they can
be solved, so we use Θ. For some problems we know some O and some Ω but
they are not the same. For example, matrix multiplication: we know it must
take Ω(n2) time, and there are algorithms that show it is O(n2.37...), but no one
knows what the theoretical limit is (we will look at matrix multiplication later
in the semester).

Now for three proofs that 1 + 2 + · · ·+ n is Θ(n2).

Proof. 1 + 2 + · · ·+ n < n+ n+ · · ·+ n = n2, so it is O(n2) (c = n0 = 1).
Also, 1 + 2 + · · ·+ n > n/2 + (n/2 + 1) + · · ·+ n > n/2 + n/2 + · · ·+ n/2 =

(n/2)2 = n2/4, so it is Ω(n2) (c = 1/4, n0 = 1). SDG

Proof. By geometry. Draw a triangle, it’s inside a square, also there is a square
1/4 the size inside it. SDG

It is usually really annoying to use these definitions directly. Instead we can
often use this theorem:

Theorem 7.4. If 0 ≤ limn→∞ T (n)/g(n) <∞ then T (n) is O(g(n)).

Proof. If limn→∞ T (n)/g(n) = k ≥ 0 then there must exist some c > k and n0
(draw a picture!) such that T (n)/g(n) ≤ c for all n ≥ n0, i.e. T (n) ≤ cg(n). SDG

15

Remark. Note that the converse is not true since T (n) might be O(g(n)) even
if the limit does not exist. For example, let T (n) = 0 when n is even, 1 when
n is odd. Then T (n) is O(1) but limT (n)/1 does not exist. But typically this
won’t be an issue with the functions we will see.

We also have:

Theorem 7.5. If 0 < limn→∞ T (n)/g(n) ≤ ∞ then T (n) is Ω(g(n)).

Proof. Exercise. SDG

Corollary 7.6. If 0 < limn→∞ T (n)/g(n) <∞ then T (n) is Θ(g(n)).

And now for the third proof that 1 + 2 + · · ·+ n is Θ(n2):

Proof. 1+2+ · · ·+n = n(n+1)/2 = n2/2+n/2, and limn→∞(n2/2+n/2)/n2 =
1/2. SDG

Arithmetic with big-O (same for Omega and Theta):

• kΘ(f) = Θ(f) when k is a constant

• Θ(f)Θ(g) = Θ(fg) (e.g. nested loops)

• Θ(f) + Θ(g) = Θ(max(f, g)) (e.g. adjacent loops)

For example, O(3n2 +17n+8) = O(3n2)+O(17n)+O(8) = O(n2)+O(n)+
O(1) = O(n2).

16

8 (L/P) Asymptotic analysis II

Definition 8.1 (Little-o). T (n) is o(g(n)) if limn→∞ T (n)/g(n) = 0. Stronger
than big-O: T is really less than g. If the limit is a positive constant then they
grow at the same rate; if the limit is zero then g outstrips T .

Present “complexity zoo”, with examples of things having each common
order, and some relevant facts interspersed. (Look in the textbook for more
examples.) Our zoo will be ordered from smallest to biggest; each thing will be
little-o of the next thing.

Constant time: Θ(1)

Does not depend on size of the input. Example: “Return the first element of a
list.”

Logarithmic time: Θ(lg n)

Examples: binary search, height of tree with n nodes; in general, repeatedly
halving.

Note: we write lg for log2. Turns out Θ(log n) vs Θ(lg n) vs Θ(lnn) etc
doesn’t matter: loga n = logb n/ logb a, just a constant factor.

Theorem 8.2. log n is o(nx) for all x > 0.

Proof. Since the base of the log doesn’t matter, it suffices to prove this for lnn.
Consider limn→∞ lnn/nx. Using l’Hôpital’s rule, this is

lim
n→∞

(1/n)/(xnx−1) = lim
n→∞

1/(xnx) = 0.

SDG

This is somewhat surprising! Θ(log n) is actually smaller than n to any
positive power: even Θ(15

√
n) or whatever. Θ(log n) is not “halfway between”

Θ(1) and Θ(n); in some sense it is much closer to Θ(1).

Linear time: Θ(n)

Examples: linear search; maximum/minimum/sum of a list; merge sorted lists.
In general, do something to every item of input.

Θ(n lg n)

Examples: mergesort or quicksort; in general, divide & conquer with Θ(n) work
to merge. We’ll study this in more detail later in the semester.

[Note: don’t prove that mergesort is Θ(n lg n), we’ll do that when we get to
divide & conquer.]

17

[Insert here proof of lower bounds for comparison-based sorting?? IF TIME,
come back and stick it in. Probably won’t be enough time.]

Quadratic time: Θ(n2)

Examples: nested loops (often), sum 1 . . . n. (But have to be careful with loops
where the number of iterations is not simply n!) All pairs.

Polynomial time: Θ(nk)

k nested loops. Number of subsets of size k, i.e.
(
n
k

)
is Θ(nk). Each nj is o(nk)

for j < k: limn→∞ nj/nk = 0.

Exponential time: Θ(2n)

Examples: all subsets. All bitstrings of length n. Number of nodes (also number
of leaves) in a tree of height n. 1+2+4+8+ · · ·+2n = 2n+1−1, so it is Θ(2n).
In general: doubling every time.

Theorem 8.3. nk is o(rn) for all integers k ≥ 0 and real numbers r > 1.

Proof. limn→∞ nk/rn = limn→∞ knk−1/rn ln r = limn→∞ k!/rn(ln r)k = 0. SDG

There is an insurmountable gulf between polynomial and exponential time.
For example, even n295 is o(1.001n)! We usually take this to be the dividing
line between “efficient/feasible” and “inefficient/infeasible”. (Of course n295 is
probably not actually feasible but in practice we don’t see that.)

Note jn is o(kn) for j < k: limn→∞ jn/kn = limn→∞(j/k)n = 0.

Factorial time: O(n!)

O(n!): all orderings of input. This is really, really bad. kn is o(n!) for all k.

18

9 (L*) Largest Sum Subinterval (LSS) problem

Input: array A[n] of integers (1-indexed). Output: Largest sum of any
subinterval. Empty interval sum = 0.

Examples:

• [10, 20,−50, 40]

• [−2, 3,−2, 4,−1, 8,−20]

(Note the problem is boring when all the entries are positive!)
How to solve this?

Brute-force

• Look at all subintervals: there are
(
n+1
2

)
(choose two endpoints, but they

can be the same) which is Θ(n2).

• Sum each subinterval: O(n), though it is often smaller.

3 nested loops, so O(n3).
How to prove it is also Ω(n3)? Note this is nontrivial! The total number of

items we look at is n× 1 + (n− 1)× 2 + (n− 2)× 3 + · · ·+ 1× n. Several proof
methods:

1. Algebraic. Throw some algebra at it. Can show this is greater than a
multiple of n3, but it takes some work.

2. Geometric. 1 long row, then 2 slightly shorter rows, then 3 even shorter
rows, etc. yields a tetrahedron which obviously has a volume which is
proportional to n3.

3. Combinatorial. Number of subintervals is about
(
n
2

)
—actually it is ex-

actly
(
n+1
2

)
. And the number of elements in subintervals that we examine

is in fact
(
n+2
3

)
, which we know is Θ(n3).

(Combinatorial proof: add two new slots to either side of the array; con-
sider all possible choices of 3 slots including the two new ones. Take the
two outermost choices to identify the subinterval strictly contained by
them; the inner choice is the state of the inner loop counter. So the total
number of loops is exactly

(
n+2
3

)
which is Θ(n3).)

Avoid repeated work/precomputation

• Make a table of partial sums S[n], where S[i] = sum of A[1] . . . A[i]. This
takes time Θ(n). We can now compute the sum of any interval in Θ(1):
A[i]+· · ·+A[j] = S[j]−S[i−1]. So now the total is Θ(n)+Θ(n2) = Θ(n2).

19

• Or use some sort of “sliding window” technique to go from the sum of
each subinterval to the next in Θ(1) time.

Be clever

Actually we can do even better! Notation: let [j, k] denote
∑k

i=j A[i].
Some observations:

1. If [1, j] ≥ 0 for all j, then LSS = whichever [1, k] is biggest.

Proof. [i, j] ≤ [1, j] (since [1, (i− 1)] ≥ 0) and [1, j] ≤ [1, k] by definition.
SDG

2. Let j be the smallest index such that [1, j] < 0. Then the LSS does not
include index j. (Intuitively, when [1, j] first falls below 0, the problem
“resets”. Can consider the rest of the array as a new smaller array.)

Proof. Suppose j is the smallest such that [1, j] < 0, and let u ≤ j ≤ v.
Note [u, j] < 0 since [u, j] = [1, j] − [1, u − 1]. ([1, j] is assumed < 0 and
[1, u − 1] is positive by assumption.) Hence [u, v] = [u, j] + [j + 1, v] <
[j + 1, v]. SDG

This means that we can scan looking for the biggest sum so far from the
beginning of the array to the current point, but as soon as the sum becomes
negative we “reset the start of the array” and keep looking.

Algorithm 2 LargestSum(A)

1: sum, largest ← 0
2: for i← 1 to n do
3: sum ← max(sum + A[i], 0)
4: largest ← max(sum, largest)

return largest

Running time is clearly Θ(n). Formal proof of correctness uses observations
from before: sum always contains the running sum from the most recent place
where the previous running sum went negative.

20

10 (L/P) Graphs (KT 3.1)

Use slides (slides.04.graph-definitions.odp) to present basic defini-
tions (undirected, m, n, matrix vs adj list representations, paths, connectivity,
cycles, trees).

Theorem 10.1. Let G = (V,E) be a graph with |V | = n ≥ 1. Any two of the
following imply the third:

1. G is connected.

2. G is acyclic.

3. G has n− 1 edges.

Do these proofs carefully—as a model for them!

Lemma 10.2. (1, 2) =⇒ (3). If G is acyclic and has n − 1 edges, then G is
connected.

Proof. Suppose we have a graph G which is connected and acyclic, with n
vertices. We prove that it has exactly n − 1 edges by induction on n. Proof
idea: induction; show we can always find a leaf to delete.

• When n = 1, there are indeed n− 1 = 1− 1 = 0 edges.

• In the inductive case, we assume the lemma holds for all connected, acyclic
graphs with n− 1 vertices.

Pick a vertex v1 ∈ V and take a walk v1, v2, . . . , never repeating an edge.
Claim: we must eventually reach a leaf (a vertex with degree 1) in at most
n−1 steps. All the vertices must be distinct since we can never backtrack
along an edge and G has no cycles. So we can take at most n − 1 steps
before we have visited all the vertices. Also, we must get stuck at a leaf
vj : if we get stuck at a vertex with more than one edge that we’ve visited,
it would create a cycle; it’s impossible to get stuck at a vertex with degree
0 (we could have picked v1 to be such) because G is connected.

Now consider G − vj , that is, (V − {vj}, E − {vj , vj−1}). It has n − 1
nodes and no cycles (removing an edge can’t create any cycles), and it is
also connected (since we removed a leaf). So by assumption it has n − 2
edges; hence G has n− 1.

SDG

Lemma 10.3. (2, 3) =⇒ (1). If G is acyclic and has n − 1 edges, then G is
connected.

21

Proof. Proof idea: counting argument.
Suppose G is acyclic and has n− 1 edges. Let l be the number of connected

components of G; we wish to show that l = 1.
Number the components of G arbitrarily, and let component j of G have

kj vertices. Then
∑l

j=1 kj = n (the sum of all the components gives the total
number of vertices). Each connected component is connected and acyclic, so
by the previous lemma it has kj − 1 edges. Since every edge of G lies in some
component, we can add these up to get the total number of edges in G:

|E| =
l∑

j=1

(kj − 1) =

 l∑
j=1

kj

− l = n− l

But we assumed |E| = n− 1, so in fact l = 1. SDG

Lemma 10.4 (Handshake lemma). In an undirected graph G = (V,E),∑
v∈V

deg(v) = 2|E|.

Proof. Each edge gets counted twice, once in the degree for each of its endpoints.
SDG

Lemma 10.5. (1, 3) =⇒ (2): If G is connected with n − 1 edges, then it is
acyclic.

This one will be on the HW.

22

11 (L) BFS (KT 3.2, 3.3)

As a quick review, recall how we represent graphs as a data structure in a
program. Typically we want to use a so-called adjacency list structure, where
we store a dictionary mapping each vertex to information about its adjacent
edges. It is called an “adjacency list” since traditionally each vertex might be
associated with a list of adjacent edges. However, it makes much more sense
to use a set rather than a list: UGraph = Map<Vertex, Set<Vertex>>. For a
weighted graph we can use WGraph = Map<Vertex, Map<Vertex, Weight>>. If
we assume Θ(1) lookup for maps or sets (e.g. using a hash table implementation),
this lets us look up a particular edge in Θ(1) and iterate over all neighbors of a
given vertex in Θ(deg(v)).

Today we’ll start exploring variants on the s-t connectivity problem, a fun-
damental question we can ask about a graph:

1. Given vertices s, t in an undirected graph G, is there a path from s to t?

2. What is the length of the shortest path from s to t?

These problems come up in lots of applications, e.g. the number of introduc-
tions needed to connect to someone in a social network; path planning e.g. for
a robot in a factory; etc.

This problem is solved by the breadth-first search algorithm. Idea: start at
vertex s and explore outward in all directions, adding vertices one “layer” at
a time. That is, L0 = {s}; L1 = all neighbors of L0; . . .Li = all neighbors of
Li−1 not in any previous layer.

23

Properties of BFS:

1. The shortest path from s to v has length i if and only if v ∈ Li. (The
proof is by induction on i: in the base case i = 0 and L0 = {s}; then, if
we assume it is true for Lk, we can show it is also true for Lk+1.)

2. There exists a path from s to t if and only if t is in some layer of the BFS
from s.

3. For each (u, v) ∈ E, the layer of u and v differ by at most 1. (As soon as
one shows up the other will show up in the next layer. Note they could
be in the same layer.)

Thinka of the BFS as making a tree:

We can store the tree simply using a dictionary π (which stands for πarent)
mapping each vertex to its parent in the BFS tree. This is good enough since
we never need to traverse back down the tree. To find a shortest path from s
to some ending vertex we just look up the ending vertex in the tree to get its
parent, then look up its grandparent, and so on, until we reach s; the final path
is just the reverse of the vertices we visited on our way up the tree.

BFS, formally:

24

Algorithm 3 BFS(G,s)

Require: Undirected graph G = (V,E), vertex s ∈ V .
1: Q← empty queue
2: π ← empty dictionary (parent map)
3: level ← empty dictionary (level map)
4: Mark all vertices Unvisited
5: Mark s Visited, add s to Q, level [s]← 0
6: while Q is not empty do
7: remove u from Q
8: for each edge (u, v) adjacent to u do
9: if v is Unvisited then

10: Mark v Visited
11: π[v]← u
12: level [v]← level [u] + 1
13: Add v to Q

return π, level

Notes:

• We could also make a version that takes a target vertex and stops early,
returning just a path from s to t.

• Keeping track of the level array is optional.

• Note we can actually tell whether a node has been Visitedby whether or
not it exists as a key in the level map.

Running time? Two nested loops—Θ(V 2)? Not necessarily!

Theorem 11.1. This implementation of BFS runs in Θ(V + E) time (if the
graph uses an adjacency list representation).

Proof. Line 4 takes Θ(V). Use an array/dictionary of booleans. Or if we use
e.g. a hash table-based set, we can initialize an empty set of visited vertices in
Θ(1) time.

Note on line 8, assuming G is using an adjacency list, it takes only Θ(deg(u))
to iterate over edges adjacent to u. (If adjacency matrix this is not as efficient.)

Loop on line 8 executes a TOTAL of 2|E| times, twice for each edge, because
each vertex ends up being visited exactly once. Note we don’t really have to
consider the loop on line 6, since we can directly quantify the TOTAL number
of times the innermost loop executes.

Now, how about the contents of the innermost loop?

• Checking whether Visited or Unvisited takes Θ(1) given array/dictionary.

• Adding edge to π is Θ(1).

• Adding v to Li+1 is Θ(1), just add to end of list or something.

25

Hence total time is Θ(V) + Θ(E) = Θ(E + V), or just Θ(E) if we use a set
to represent visited vertices. SDG

Of course Θ(E+V) = Θ(max(E, V)), but we don’t a priori know which one
is bigger. Θ(E) can be as small as Θ(1) (if there are very few edges, i.e. the
graph is sparse) and as big as Θ(V 2) (if there are a lot of edges, i.e. the graph
is dense).

26

12 (L/P) Bipartite and directed graphs (KT 3.4,
3.5)

Definition 12.1. An undirected graph G = (V,E) is bipartite if V can be
partitioned into two sets L, R such that every edge has one endpoint in L and
one in R. (Draw a picture.)

These show up a lot—they are an important special class of graphs. They
can be used to model relationships between two sets (e.g. matchings). Many
problems which are difficult for graphs in general become tractable for bipartite
graphs.

Another way to talk about this:

Definition 12.2. A graph is k-colorable if each node can be assigned one of k
colors such that no two vertices connected by an edge have the same color.

Note that 2-colorable is the same thing as bipartite. We will also talk about
red/blue instead of L/R. (Aside: the notion of k-colorability for k ≥ 3 turns
out to be algorithmically much more difficult to deal with! We will return to
this much later in the semester.)

Do some examples: draw some graphs and ask whether they are bipartite.

Theorem 12.3. G is bipartite iff it has no odd-length cycles.

Proof. (=⇒) All paths must alternate between L and R. Hence every cycle is
even.

(⇐=) Pick an arbitrary vertex s and run a BFS, generating layers L0, L1,
L2, Then pick

L = L0 ∪ L2 ∪ L4 ∪ . . .
R = L1 ∪ L3 ∪ L5 ∪ . . .

Claim: every edge (x, y) ∈ E has one endpoint in L and one in R. By
the single-layer-difference property of BFS, there can’t be any edges between
different layers within L or R. The only possibility we have to worry about is
an edge between two vertices in the same layer.

So, suppose (x, y) ∈ E and x, y ∈ Lj ; we will derive a contradiction. Let z
be the least common ancestor of x and y in the BFS tree (draw a picture), and
suppose z has height h above x and y. Then there is a cycle of length 2h + 1,
contradiction.

27

SDG

In fact, we can use this as an algorithmic test for bipartiteness: run a BFS
from any vertex. Then G is bipartite iff there is no edge within some layer. If
there is a cross-edge within a layer, we have found an odd cycle; otherwise, we
have found a 2-coloring of the graph.

Another application of BFS: finding strongly connected components.

Definition 12.4. A directed graph is like an undirected graph except the edges
are ordered pairs of vertices, E ⊆ V × V .

Lots of things generalize naturally to directed graphs: instead of paths we
have directed paths. Instead of degree we have indegree and outdegree. In a
directed graph “connected” is “weakly connected”. “Strongly connected” means
between any two vertices there is a directed path in both directions. BFS extends
naturally to directed graphs as well: only follow edges in the direction they are
supposed to go.

Lemma 12.5. A directed graph G is strongly connected iff there is some vertex
s such that every other vertex in G is mutually reachable with s (that is, for
each v ∈ V there is a directed path from s to v and another directed path from
v to s).

28

Proof. (=⇒) If G is strongly connected we can pick any vertex as s.
(⇐=) Let u, v ∈ V and suppose all vertices are mutually reachable with s.

Then we can construct a directed path from u to v by following the path from
u to s and then from s to v; and vice versa. SDG

Definition 12.6. Given a directed graph G, its reverse graph Grev is the graph
with the same vertices and with all edges reversed.

Theorem 12.7. A directed graph G is strongly connected if and only if all
vertices are reachable from some vertex s in both G and Grev.

Proof. A vertex v is reachable from s in Grev if and only if s is reachable from v
in G. (A directed path from x to y in G turns into a directed path from y to x
in Grev.) So this is really just saying the same thing as the previous lemma. SDG

Corollary 12.8. We can decide whether a directed graph G is strongly con-
nected in Θ(V + E) time.

Proof. Pick a vertex s, and run a BFS from s in G and then run another BFS
from s in Grev. Each BFS takes Θ(V + E) time, and computing Grev takes
Θ(E) time. SDG

29

13 (L) DAGs and topological ordering (KT 3.6)

Definition 13.1. A directed acyclic graph (DAG) is a directed graph with no
directed cycles.

In general represents precedence/prerequisites. Courses; compilation; pro-
duction pipeline; etc.

Definition 13.2. A topological ordering (topological order, topological sort, top-
sort) of a directed graph is an ordering of nodes v1, . . . , vn such that for every
(vi, vj) ∈ E, we have i < j.

In other words, we can line up the vertices so that edges only point to the
right. (Draw a picture.) This corresponds to an order in which classes can be
taken, tasks can be done, etc. so prerequisites are always met.

Theorem 13.3. A directed graph G has a topological ordering iff G is a DAG.

Proof. (=⇒) Suppose G has a topological ordering v1, . . . , vn. We must show
that G has no directed cycles. Intuitively, this is because any directed cycle
must have at least one edge pointing backwards. More formally, suppose there
is a cycle C, whose lowest-numbered vertex is vi, with the previous vertex in
the cycle being vj . But then there is an edge vj → vi with i < j, a contradiction
since v1, . . . , vn is a topological ordering. Hence G has no cycles.

(⇐=) Proof by algorithm! SDG

Lemma 13.4. A DAG has a vertex with indegree 0.

Proof. Proof by algorithm. Pick any starting vertex v, and keep following in-
coming edges backwards until finding a vertex with no incoming edges. This
process must stop: if not, by the pigeonhole principle, since there are only
finitely many vertices, we must eventually visit a vertex twice, but this would
form a directed cycle, and we assumed the graph is a DAG. SDG

Proof. Now we prove that if G is a DAG, it has a topological ordering. Proof
by induction on n / recursive algorithm.

• Base case: if n = 1 there is only one vertex and no edges, so there is a
trivial topological ordering.

• If n > 1, find a vertex v with indegree 0 by the previous lemma/algorithm.
Note that G−{v} (delete vertex and any connected edges) is also a DAG
since deleting things cannot create any cycles. Then by the induction
hypothesis, G−{v} has a topological ordering. Adding v at the beginning
then makes a topological ordering for G since v has no incoming edges.

SDG

30

This is Θ(V 2): searching for an indegree-0 vertex takes Θ(V) in the worst
case, and we have to do it once for each vertex. But we can do better when the
graph is sparse. The idea is to maintain some extra information that allows us
to quickly find a vertex with indegree 0 on each iteration without searching.

Theorem 13.5. A topological sorting algorithm can be implemented in Θ(V +
E) time.

Proof. (Assume adjacency list representation.)
We need to be able to quickly find the next remaining vertex with indegree

0 (don’t want to re-run a search every time), and also quickly delete a vertex
(updating the indegrees of other vertices appropriately).

Maintain:

• Array/dictionary in[v] = number of incoming edges (indegree) of v. Ini-
tialize in Θ(V + E) time (just look at each vertex and count number of
incoming edges).

• Queue/stack/whatever Z of vertices with indegree 0. Initialize in Θ(V)
after building in: if in[v] = 0 then add v to Z.

At each iteration, dequeue a vertex v from Z in Θ(1). To delete v, decrement
in[u] for each edge (v, u), and add u to Z if in[u] becomes zero. This is Θ(1)
per edge and only looks at each edge once in total. Hence Θ(V +E) overall. SDG

The resulting algorithm is known as Kahn’s Algorithm, and was first pub-
lished by Arthur Kahn in 1962.

Algorithm 4 TopSort(G)

Require: Directed graph G = (V,E).
1: T ← empty list
2: Z ← empty queue/stack/whatever (with Θ(1) add/remove)
3: in ← dictionary mapping all vertices to 0
4: for each v ∈ V do
5: for each u adjacent to v do
6: increment in[v]

7: for each v ∈ V do
8: if in[v] = 0 then
9: add v to Z

10: while Z is not empty do
11: v ← Z.dequeue
12: append v to T
13: for each u adjacent to v do
14: decrement in[u]
15: if in[u] = 0 then
16: add u to Z

31

14 (P/L) Dijkstra’s algorithm

Though we will continue studying graph algorithms, we will now specifically
study several greedy algorithms. The basic idea of a greedy algorithm is to pick
the locally best thing at each step. For some problems, we can prove that this
leads to a globally best solution.

So far we have considered undirected and directed graphs, but each edge
either exists or not. We will now consider weighted graphs, where each edge has
some sort of cost.

Definition 14.1. A weighted (directed or undirected) graph is a graph where
each edge is assigned a weight. We will denote the weight of edge (u, v) by wuv.

The weight or length of a path is just the sum of the weights of its edges.

For now, we will consider weights in R+, that is, nonnegative real numbers;
later, we will consider R; in general, one can use any semiring.

Note that we can think of an unweighted graph as a weighted graph where
all edges have weight 1.

Problem 1 (s-t shortest path). Given vertices s, t, find the shortest (weighted,
directed) path from s to t.

Note, almost all solutions actually end up solving a more general problem:

Problem 2 (single-source shortest path (SSSP)). Given a vertex s, find the
shortest paths from s to every other vertex. Intuitively, you can’t find shortest
path to just t without exploring the rest of the graph.

In an unweighted graph, we would use BFS, but now we need to take edge
weights into account. Intuition: BFS searches outwards one layer at a time,
by increasing distance. We’ll do the same thing: search outward by increasing
distance. Imagine turning on a source of water at vertex s, and watching the
water flood the whole graph. Each edge is a (directed) pipe, and the weight of
an edge says how long the water takes to traverse that pipe.

Note that this only makes sense when the edge weights are positive—if water
can “travel back in time” it invalidates this whole scheme; we can’t necessarily
find the next vertex to be reached by the water with a greedy approach. If
we want to find shortest paths when edge weights can be negative, we need a
different algorithm (which we will study later).

Here’s the basic algorithm, which we can think of as a generalization of BFS
to weighted graphs. Recall that BFS keeps track of

• a set of visited vertices,

• a list of layers,

32

• the parent map π.

The list of layers is really telling us the shortest distance to the nodes in each
layer, since the distance is just the number of edges. The appropriate general-
ization will thus keep track of:

• the set S of vertices that the water has reached;

• the shortest distance d[v] from s to d (i.e. how far did the water have to
go before it first reached v?),

• the predecessor π[v] of each vertex in the shortest path from s to v (i.e.
where did the water come from when it first reached v?) We can use π to
reconstruct the shortest path from s to any vertex v (just start at v and
use π to follow edges backwards).

Algorithm 5 BasicDijkstra(G,s)

Require: Weighted graph G = (V,E), vertex s ∈ V .
1: S ← {s}
2: d[s]← 0, all other d[v]←∞
3: while S 6= V do
4: Pick u ∈ S, v /∈ S such that d[u] + wuv is as small as possible.
5: π[v]← u
6: d[v]← d[u] + wuv

7: Add v to S
return π, d

33

How long does this take? It depends a lot on how we implement line 4. A
brute-force approach simply iterates over all edges (u, v), filters out only those
with u ∈ S and v /∈ S, and picks the one with the smallest d[u] +wuv. Since the
while loop adds one vertex to S on each iteration, it executes |V | times, making
the whole algorithm Θ(V E) (which could be O(V 3) if the edges are dense). It
turns out we can do better than this if we use a more clever scheme for quickly
finding the best edge on line 4.

34

15 Dijkstra proof and asymptotics

Theorem 15.1. Dijkstra’s algorithm correctly solves the SSSP problem for a
weighted graph with nonnegative edge weights.

Proof. We will prove the loop invariant that for all v ∈ S, d[v] is the length of
the shortest path from s to v.

The proof is by induction on the number of loop iterations.

• At the start of the algorithm, S = {s} and d[s] = 0.

• Now suppose the invariant holds and the loop executes one more time.
Let u, v be the vertices picked by the algorithm. We will show that any
other path from s to v must be at least as long as the path from s to v
via u. [Draw a picture.] Any other path from s to v must exit S at some
point, say the edge where it exits S is x → y. But by the way u, v were
chosen, we know that the shortest path from s to y via x is at least as long
as the path from s to v (since by the invariant we know the shortest path
from s to x), plus there may be extra distance from y to v as well. (Notice
how the assumption of nonnegative edge weights is important here—if the
distance from y to v could be negative it invalidates this proof!)

Hence, the loop updates S and d appropriately and the invariant still
holds.

SDG

How fast can we make Dijkstra run? While loop obviously executes n times.
The crux of the issue is how long it takes to pick the best u and v. Brute-force:
just consider every edge and find the minimum. Then the whole algorithm
would be Θ(V E) which could be as high as O(V 3). Can we do better?

The key, as usual, is to use some data structures to keep track of enough
information so that we can pick u and v quickly without having to search through
the whole graph every time.

• We will expand d to keep track of not just the shortest distances to vertices
in S, but the current shortest known distances to other vertices as well.
So d[v] will always be an upper bound on the shortest distance from s to
v. We may have to update d[v] every time we add a vertex u to S with
an edge (u, v).

• We will expand π similarly: π[v] is the predecessor of v along the current
shortest known path from s.

Idea: at each iteration we want to pick the vertex v /∈ S with the smallest
d[v]. We will store the vertices v /∈ S in some kind of data structure so that we
can quickly remove the one with the smallest d[v]. We then need to be able to
update d and π appropriately.

35

So we need a data structure that supports the following operations, i.e. a
priority queue:

Array/dict Sorted array Binary Heap Fibonacci Heap
Remove min Θ(n) Θ(1) Θ(lg n) Θ(lg n)
Decrease key Θ(1) Θ(n) Θ(lg n) Θ(1)

(Annoying note: Java’s standard library does not have a priority queue
implementation capable of doing a fast decreaseKey operation. One can simply
remove an element and re-insert it, but this takes Θ(n) since there is no way to
find an element other than scanning over the entire heap. An implementation
supporting a fast decreaseKey could, for example, keep a hash table on the side
which keeps track of the location of each item within the heap.)

Algorithm 6 Dijkstra(G,s)

Require: Weighted graph G = (V,E), vertex s ∈ V .
1: S ← {}
2: d[s]← 0, all other d[v]←∞
3: Create priority queue Q containing all nodes, using d[v] as the key for v.
4: while Q is not empty do
5: u← Q.removeMin
6: Add u to S
7: for each outgoing edge (u, v) from u do
8: if v /∈ S & d[u] + wuv < d[v] then
9: d[v]← d[u] + wuv

10: Q.decreaseKey(v, d[v])
11: π[v]← u

return π, d

Time complexity? Again, we can’t just simplistically look at loops and so
on. Instead, we count the total time taken by various operations.

• For any reasonable implementation of Q, creating it in the first place takes
Θ(V) time since we are inserting vertices with known keys all at once.

• We end up calling removeMin once for each vertex, and Q has size at most
|V |, which contributes Θ(V ·Tremove(V)) (the PQ decreases each time, but
half the calls are on a priority queue of size at least V/2, so we are still
justified in saying it takes Θ(V · Tremove(V))).

• We also call decreaseKey once for each edge, which contributes Θ(E ·
Tdecrease(V)).

• All other operations (adding to S, checking for membership in S, setting
values in d and π) take Θ(1), which adds Θ(V + E) overall.

So in total, the algorithm takes Θ(V · Tremove(V) + E · Tdecrease(V)). We’ll
generally assume that |E| ≥ |V | (otherwise the graph is either a tree, in which

36

case we don’t need this algorithm, or there are degree-zero vertices which we
can throw away). Total running time depends on implementation of Q:

• Sorted array: Θ(V + EV) = Θ(EV).

• Array/dictionary: Θ(V 2 + E) = Θ(V 2) (since E < V 2).

• Binary heap: Θ(V lg V +E lg V) = Θ(E lg V) (since we assume |E| ≥ |V |).

• Fibonacci heap: Θ(V lg V + E).

Fibonacci heap is fastest known implementation. But for simplicity of imple-
mentation and speed in practice, binary heap is best all-around.

37

16 (L) Minimum Spanning Trees (MSTs)

Input: a weighted, undirected graph G = (V,E) (with weights in R+, i.e.
nonnegative).
Output: A minimum-weight spanning subgraph: that is, a set of edges T ⊆ E
such that (V, T) is connected and T has the smallest total weight among all
such spanning subgraphs.

Applications: connect things with minimum cost (assuming no redundancy
is needed), e.g. transportation or communication networks.

Observation 4. Any minimum-weight spanning subgraph (MWSS) is a tree.

Proof. A MWSS is connected by definition. If a spanning subgraph has a cycle,
we can remove any edge from the cycle, resulting in a spanning subgraph that is
still connected but with smaller weight. Hence any MWSS must be acyclic. SDG

A MWSS is thus usually referred to as a minimum spanning tree (MST).
Given a graph, how can we compute a MST? Do an example, come up with

greedy algorithms. Draw a second copy (have a student make the copy while
drawing the first copy) and try a different algorithm.

• Kruskal: repeatedly pick the shortest edge that doesn’t make a cycle.

• Prim: repeatedly pick the shortest edge that expands the growing tree.

• (Reverse-delete: repeatedly delete the biggest edge that doesn’t disconnect
the graph.)

38

Lots of greedy algorithms work! It’s almost like we can’t mess it up. How
to prove this?

Lemma 16.1 (Cut Property). Let X, Y partition V and let e = (x, y) be the
shortest edge crossing the (X,Y) cut (that is, the shortest edge with x ∈ X and
y ∈ Y). Then e must be in any MST.

Proof. Suppose we have a spanning tree T that does not include edge e; we will
show that it is not a MST (and hence every MST must include e). Consider
the unique path in T from x to y. It must cross the cut at least once, say at
e′ = (x′, y′). Exchange e for e′: the resulting graph is still connected, since any
path that used to go through e′ can now go through e. The resulting graph also
has lower total weight, so T was not a minimum spanning tree. SDG

This is an exchange argument, which is a general technique when proving
something is not minimal—find appropriate things to exchange so the total
weight becomes smaller (while preserving any relevant properties). Note we
can’t exchange e with any edge across the cut! For example. . . We particularly
found the edge on the path from u to v since that guarantees we can exchange
it with e while preserving connectivity.

Theorem 16.2. Kruskal’s algorithm is correct.

Proof. Suppose at some step the algorithm picks e = (x, y). Take X to be
the set of nodes connected to x so far (not including e); x ∈ X by definition.
y /∈ X since e would then make a cycle, and Kruskal wouldn’t have picked it.
By definition Kruskal picks the smallest such e. So the chosen edge must be in
a MST by the cut property. SDG

The proof for Prim’s algorithm is very similar; left as an exercise.

39

17 (L*) Implementing MST

Let’s implement Prim’s algorithm. We’ll build the tree T . S is the set of
vertices connected by the tree so far.

Algorithm 7 HighLevelPrim(G)

Require: Weighted, undirected, connected graph G = (V,E).
1: T ← empty tree
2: S ← {v} (pick arbitrary starting vertex v)
3: while |S| < n do
4: e← smallest edge with one end in S and one end not in S.
5: Add e to T .
6: Add v to S.

This is simple enough; by induction we can see that T will always be a tree
and has S as the vertices connected by T . Clearly the important line is the one
about picking e. How can we do that efficiently? Use a priority queue! Store
“fringe” vertices (connected to S by one edge) keyed by weight of shortest edge
to them from an edge in S.

40

Algorithm 8 Prim(G)

Require: Weighted, undirected, connected graph G = (V,E).
1: S ← {s} (pick arbitrary starting vertex s)
2: fringe ← empty priority queue of vertices
3: π ← empty parent map
4: for each neighbor v of s do
5: Add v to fringe using wsv as priority
6: π[v]← s

7: while |S| < |V | do
8: u← fringe.removeMin
9: Add u to S

10: for each edge (u, v) with v /∈ S do
11: if v ∈ fringe then
12: if wuv < fringe.priority(v) then
13: fringe.decreaseKey(v, wuv)
14: π[v]← u

15: else
16: fringe.add(v, wuv)
17: π[v]← u

What’s the running time of this algorithm?

• Lines 1–4 are all constant time.

• The loop at line 5 takes O(V) time: lines 6 and 7 are constant-time
operations, and s may have O(V) neighbors.

• The while loop at line 9 executes |V | times. Line 10 therefore contributes
a total of O(V · Tremove(V)) (depending on the priority queue implemen-
tation). Lines 11 and 12 are constant so they contribute a total of O(V).

• Line 16 executes at most once per edge, so it contributes a total of O(E ·
Tdecrease(V)).

• Line 20 executes at most once per vertex, so it contributes a total of
O(V · Tadd).

All together, then, this algorithm isO(V+V ·Tremove(V)+E·Tdecrease(V)+V ·
Tadd). If we use a binary heap-based priority queue implementation, Tremove(V) =
Tdecrease(V) = Tadd = Θ(log n), so this becomes O(V + V log V + E log V) =
O(E log V). If we use a Fibonacci heap, Tremove(V) = Θ(log n) but Tadd =
Tdecrease(V) = Θ(1), so it becomes O(V +V · log V +E+V) = O(E+V log V).
These running times are the same as Dijkstra’s algorithm.

41

18 (L) Kruskal’s Algorithm, Union-Find data
structure

Recall Kruskal’s algorithm for computing MST: consider edges in order from
smallest to biggest, keep each edge unless it would create a cycle with edges
already chosen. How to implement this?

First idea:

• Initialize T to be an empty graph.

• Sort the edges.

• For each edge (u, v), run a DFS from u in T in and see if we can reach v.
If so, adding (u, v) would create a cycle so discard it; otherwise, add (u, v)
to T .

How fast is this? Sorting the edges takes Θ(E logE) = Θ(E log V). (E is
O(V 2) so logE is O(log V 2) = O(2 log V) = O(log V).) Running a DFS in T
takes Θ(V +E) = Θ(V) (since T will never have more edges than vertices), and
in this algorithm we run a DFS once for each edge, for a total of Θ(V E), which
dominates the Θ(E log V) time to sort the edges. Of course, Θ(V E) can be as
big as Θ(V 3) if there are a lot of edges. Can we do better?

Yes, we can! Notice that for each edge (u, v), doing a DFS is sort of overkill,
in the sense that it actually tries to find a path from u to v, but we don’t care
about the path, only whether u and v are already connected or not. In this
case—when we only care about which vertices are connected and not about the
actual paths between them—we can test for connectivity much faster.

The basic idea is to come up with some sort of data structure to maintain a
set of connected components. Given such a data structure, the algorithm looks
something like this:

• Start every vertex in its own connected component.

• For each edge, test whether its vertices are in the same component (which
means it would form a cycle) or in different components.

• If the endpoints are in different components, add the edge to T , and merge
the two components into one.

This kind of data structure is called a union-find structure, and from the
algorithm above we can see what operations it needs to support:

• MakeSets(n): create a union-find structure containing n singleton sets.

• Find(v): return the name of the set containing v. (“Name” could be
anything, typically we will use integers.) To check whether two vertices
u and v are in the same connected component, we can test if Find(u) =
Find(v).

• Union(x, y): merge the two sets whose names are x and y.

42

This has lots of applications! (See homework.)
Given such a data structure, we can implement Kruskal’s algorithm as fol-

lows:

Algorithm 9 Kruskal(G)

Require: Weighted, undirected, connected graph G = (V,E).
1: T ← empty set of edges
2: Sort the edges of G by weight
3: U ←MakeSets(n)
4: for each edge e = (u, v) from smallest to biggest do
5: if U.Find(u) 6= U.Find(v) then
6: Add e to T
7: U.Union(u, v)

• Sorting edges by weight takes time Θ(E logE) = Θ(E log V).

• We do 2|E| Find operations.

• We do at most |V | − 1 Union operations.

Hence, the overall time is O(E log V + TMakeSets + ETFind + V TUnion). We
would really like for TFind and TUnion to be O(log V) (or better), which would
make the whole thing O(E log V).

First idea: just keep a dictionary that maps each node to an “id” which
identifies its set.

• Find is Θ(1). (Assuming Θ(1) dictionary lookup.)

• But to do Union we have to go through and change all the ids of one of
the sets. This could be O(n). Not good enough!

log n, eh? This should make us think of trees. Idea: forest (multiple trees)
of vertices where each points to its parent. (Parents don’t need to know about
their children.) We can represent this simply with an array/dictionary where
π[v] = p means p is the parent of v; by convention, π[v] = v means v is a root.
Each tree is a set; the root of the tree will be used as the name of the set. Nodes
are given an id “lazily”—might not point directly to its id.

43

• To do Find, just follow pointers up to the root. That is, given v, look up
π[v], then π[π[v]], and so on, until finding a root.

• To do Union(x, y), just merge the trees by setting one to be the parent
of the other, that is, π[x] ← y. Note that this only works if x and y
are already roots. (For convenience, one might also want to implement a
version of Union which can work on any nodes, by calling Find on each
first and then doing the union.)

Clearly Union is Θ(1), hooray! But what about Find? It seems like it
might be O(n) in the worst case, if we end up with an unbalanced tree. But if
we are clever/careful in how we implement Union, this won’t happen!

• Keep track of the size of each set (i.e. in a separate array/dictionary).

• When doing Union, always make the smaller set a child of the larger (and
update the size of the larger in Θ(1)).

Theorem 18.1. Find takes Θ(log n) time.

Proof. The distance from any node up to its root is, by definition, the number
of times its set has changed names. But the name of a node’s set only changes
when it is unioned with a larger set. So each time a set changes names, its
size must at least double. The total size of a set can’t be larger than n; hence
the most time any element can have its set change names, and therefore its
maximum depth, is O(log n). SDG

44

One can also implement path compression: when doing Find, update every
node along the search path to point directly to the root. This does not make
Find asymptotically slower, and it speeds up subsequent Find calls. One can
show (although the proof is somewhat involved—it would probably take two
lectures or so) that Find then takes essentially Θ(lg∗ n) on average, where lg∗ n
is iterated logarithm of n, defined as the number of times the lg function must
be iterated on n before reaching a result of 1 or less. This means that the largest
number for which lg∗ n = k is n = 22

2...

with k copies of 2 stacked up in a tower

of exponents! So, for example, lg∗ n ≤ 5 for all n ≤ 22
22

2

= 22
24

= 22
16

= 265536,
a number with 19729 decimal digits (for comparison, the number of particles
in the entire universe is estimated at around 1080, a number with a measly 81
decimal digits). So although in theory lg∗ n is not a constant—it does depend
on n, and can get arbitrary large as long as n is big enough—in practice, in our
universe, it is essentially a constant (and a rather small constant at that). This
means that both Find and Union can be implemented to run in (essentially)
constant time!

Note, however, that this does not change the asymptotic running time for
Kruskal’s algorithm, which is still dominated by the Θ(E log V) time needed to
sort the edges.

45

19 Huffman coding

46

20 (P/L) Divide and Conquer: Master Theorem

Basic idea of divide & conquer:

• Break input into subproblems.

• Solve subproblems recursively.

• Combine subproblem solutions into overall solution.

When it works, this is a beautiful technique and very amenable to analysis:

• Implementation: recursion

• Correctness proof: induction

• Asymptotic analysis: recurrence relations

Classic example: mergesort. Look at call tree of mergesort to see why it is
Θ(n log n): the tree has height lg n, and we do Θ(n) work merging at each level.

Integer multiplication

Input: two n-bit integers A, B.
Output: A×B.

Note that adding two n-bit numbers takes Θ(n). The naive grade-school
algorithm to multiply them takes Θ(n2): multiply A by each bit of B in Θ(1)
time (for each bit of B we either get 0 or a shifted copy of A), and then add
the results—there are Θ(n) shifted copies of A to add, and each addition takes
Θ(n), for a total of Θ(n2).

Let’s try a divide and conquer approach. Divide each integer into two n/2-
bit halves. (Assume n is a power of two—if not, we could always left-pad
the numbers with zeros, which only increases the size by at most a factor of
2.) For example, if A = 10510 = 011010012 then A1 = 01102 = 610 and
A2 = 10012 = 910. Note 6 · 24 + 9 = 105. In general, A = A1 · 2n/2 + A2 and
B = B1 · 2n/2 +B2. Multiplying,

AB = (A1B1)2n + (A1B2 +A2B1)2n/2 +A2B2.

So we have broken the original problem (multiplying two n-bit numbers) into
four subproblems of size n/2 (i.e. four n/2-bit multiplications) plus some ex-
tra work to combine the results. Note the combining takes Θ(n) time (three
additions at Θ(n) each, plus two shifts which take constant time). So if T (n)
represents the amount of time needed to multiply two n-bit numbers, we have
the recurrence

T (1) = Θ(1)

T (n) = 4T (n/2) + Θ(n)

We can unroll this into a recursion tree to figure out how much total work
happens:

47

• The tree has height log2 n.

• At depth k, there are 4k recursive calls, each on a problem of size n/2k.

• At each recursive call of size n/2k we do Θ(n/2k) work.

• Hence the total amount of work at level k is 4kΘ(n/2k) = 2kΘ(n).

Hence the total amount of work in the whole tree (noting that 2log2 n = n)
is

log2 n∑
k=0

2kΘ(n) = Θ(n) + 2Θ(n) + 4Θ(n) + · · ·+ nΘ(n)

= (1 + 2 + 4 + · · ·+ n)Θ(n)

= (2n− 1)Θ(n) = Θ(n2).

Argh! This turns out to be no better than our original naive algorithm. BUT
it was a good exercise, and gives us insight into more general situations—not
to mention this approach can be salvaged by doing something a bit more clever
when we split up the problem into subproblems. But first, let’s prove a more
general theorem.

Lemma 20.1. alogx b = blogx a.

Lemma 20.2. For some positive constant r and some variable x, let

S = 1 + r + r2 + · · ·+ rx =
1− rx+1

1− r
.

48

• If r < 1, then S is Θ(1).

• If r = 1, then S is Θ(x).

• If r > 1, then S is Θ(rx).

Theorem 20.3 (Master Theorem). If

T (n) ≤ aT (dn/be) +O(nd)

for positive constants a, b, and d, then

T (n) =


O(nd) a < bd

O(nd log n) a = bd

O(nlogb a) a > bd.

Intuitively, a tells us how fast the number of recursive calls grows; bd tells us
how fast the problems are getting smaller. The ratio of these will end up being
the common ratio of a geometric sum.

• If a < bd, then the problems get smaller faster than the number of prob-
lems increases, and the total amount of work is dominated by the work
done at the very top of the recursion tree.

• If a > bd, then the number of nodes is growing faster than the work
decreases, so the amount of work is dominated by the bottom level of the
tree (as in our integer multiplication example).

• If a = bd, then the growth of the number of subproblems is exactly bal-
anced by the decrease in the amount of work, so there is exactly the same
amount of work done in total at each level of the recursion tree (namely,
O(nd)), and the overall total is hence this amount of work per level times
the number of levels (as in merge sort).

Proof. We begin by drawing the recursion call tree:

49

• The tree has height logb n.

• A node at level k has size n/bk and does O((n/bk)d) work.

• There are ak nodes at level k, so the total work at level k is

ak ·O
((n

bk

)d)
= O(nd)

(a
bd

)k
.

Hence the overall total work is

logb n∑
k=0

O(nd)
(a
bd

)k
= O(nd)

logb n∑
k=0

(a
bd

)k
.

This is O(nd) times a geometric series with ratio a/bd.

• If a < bd then the ratio is < 1 and the sum is a constant; hence the total
work is O(nd).

• If a = bd then the ratio is 1 and the sum is O(logb n); hence the total work
is O(nd log n).

• If a > bd then the ratio is > 1 and the sum is proportional to its final
term, (a/bd)logb n. In that case the total work is

O

(
nd ·

(a
bd

)logb n
)

= O

(
nd · alogb n

(blogb n)d

)
= O(alogb n) = O(nlogb a).

SDG

50

21 (L*) Applications of divide & conquer, intro
to FFT

Karatsuba’s algorithm

Now, back to integer multiplication! In 1960 it seemed “obvious” that integer
multiplication was Ω(n2); Andrey Kolmogorov (a really huge name in mathe-
matics) posed it as a conjecture. Then Anatoly Karatsuba disproved the con-
jecture by coming up with a faster algorithm!

Break up A and B into two pieces of size n/2 as before. Now for Karatsuba’s
clever insight. Define

P1 = A1B1

P2 = A2B2

P3 = (A1 +A2)(B1 +B2)

Note P3 − P1 − P2 = A1B2 +A2B1. Hence

AB = P12n + (P3 − P1 − P2)2n/2 + P2.

This requires only three multiplications of size n/2! (Along with two additions
of size n/2, four additions or subtractions of size n, and two shifts—more work
than before, but all still Θ(n) in total.)

Hence T (n) = 3T (n/2) + Θ(n), so we can apply the Master Theorem with
a = 3, b = 2, and d = 1. 3 > 21 so we are in the third case of the theorem (the
work is concentrated at the bottom of the call tree), and we conclude that this
algorithm is O(nlog2 3) ≈ O(n1.59).

This is not even the fastest known algorithm—the fastest algorithm actually
used in practice is the Schönhage-Strassen algorithm, which can multiply two n-
bit integers in O(n log n log log n). [Q: what does a theoretical computer scientist
say when drowning? A: log log log . . .]

Matrix multiplication

Recall how matrix multiplication works. Given n×n matrices X and Y , we
want to compute XY where

(XY)ij =
∑
k

XikYkj .

(Incidentally, this is much more important than it might seem: there are a
whole host of linear algebra operations which can be reduced to doing matrix
multiplication; there are lots of algorithms, e.g. graph algorithms (remember
adjacency matrices?) that can be similarly reduced. . .)

How long does this take? Obvious algorithm is Θ(n3): three nested loops
(for each of the n2 elements of the output array, we do n multiplications and n

51

additions). So we can say matrix multiplication takes O(n3). Also, it is clearly
Ω(n2) since the output has size n2. But it seems “obvious” that we can’t do
any better than n3. . . can we?

In fact, lots of people used to think Θ(n3) was the best possible, until Volker
Strassen made a surprising discovery—a divide-and-conquer algorithm faster
than the naive Θ(n3)!

The basic idea boils down to a “trick” (similar in spirit to Karatsuba’s algo-
rithm) for computing the product of 2× 2 matrices using only 7 multiplications
instead of 8.

XY =

[
a b
c d

] [
e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
Computing the result directly, as above, obviously requires eight multiplications
(and four additions).

Now define:

p1 = a(f − h)

p2 = (a+ b)h

p3 = (c+ d)e

p4 = d(g − e)
p5 = (a+ d)(e+ h)

p6 = (b− d)(g + h)

p7 = (a− c)(e+ f)

Computing all the pi requires 10 additions and 7 multiplications. Now, as you
can check,

XY =

[
p5 + p4 − p2 + p6 p1 + p2

p3 + p4 p1 + p5 − p3 − p7

]
.

All told, we have now computed XY using 18 additions and 7 multiplications.
This is a terrible algorithm for multiplying actual 2×2 matrices! But we can turn
it into a recursive divide-and-conquer algorithm for multiplying large matrices.

Assume X, Y are n × n matrices where n is a power of 2. Break each one
into four n/2× n/2 submatrices (“blocks”). That is,

X =

[
A B
C D

]
Y =

[
E F
G H

]
where A, . . . ,H are n/2×n/2 matrices. It turns out that matrix multiplication
works the same way on these blocks as it does for actual 2× 2 matrices, that is,

XY =

[
AE +BG AF +BH
CE +DG CF +DH

]
(For proof, see any linear algebra textbook, or just think about it a bit.)

If we do the obvious thing here and make 8 recursive calls, note that we have
T (n) = 8T (n/2)+O(n2), so we can apply the Master Theorem with a = 8, b = 2,

52

and d = 2. Since 8 > 22 the algorithm takes O(nlogb a) = O(nlog2 8) = O(n3):
this is just the naive algorithm.

But instead, we can use the above method for multiplying 2 × 2 matrices:
this results in only seven recursive calls, and a constant number of extra matrix
additions which still take O(n2) overall. So now a = 7, b = 2, and d = 2: we
still have 7 > 22 so the algorithm is O(nlog2 7) ≈ O(n2.81).

Although asymptotically faster than “naive” matrix multiplication, Strassen’s
algorithm is

• numerically less stable

• only faster for n > 1000 or so, because of the overhead of extra additions
and so on.

But it’s actually used in practice, especially for multiplying very large matrices
when numerical stability is not an issue (e.g. over finite fields).

Strassen’s breakthrough spurred a lot more research into the problem. The
currently best known asymptotic complexity is about O(n2.37), but such algo-
rithms are not used in practice because they would only be faster for astronom-
ically large matrices.

Introduction to the Fast Fourier Transform

Problem: multiplying two polynomials of degree n,

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

where the ai are complex numbers (really, any field will do).
How fast can we multiply two such polynomials?

• Using a simple naive algorithm we can clearly achieve O(n2).

• We can use Karatsuba’s trick to achieve O(nlog2 3).

But it turns out we can do even better, using the Fast Fourier Transform (FFT).
The FFT is one of the most important algorithmic developments of the 20th
century, and has tons of applications in engineering, physics, chemistry, astron-
omy, geology, signal processing. . . Particular applications you may be familiar
with include encoding and decoding DVDs, JPEGs, and MP3s, as well as speech
processing (i.e. every time you speak to your phone or your computer, it prob-
ably runs FFT).

Operations on polynomials, represented in the usual way by a list of n + 1
coefficients a0, a1, . . . , an:

• Addition: O(n).

• Evaluation: O(n) using Horner’s method : a0+x(a1+x(a2+· · ·+x(an) . . .))

• Multiplication (convolution): O(n2) brute force.

a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + . . .

53

Let’s consider a different representation of polynomials, based on the

Theorem 21.1 (Fundamental Theorem of Algebra). Any nonzero degree-n
polynomial with complex coefficients has exactly n complex roots.

Corollary 21.2. A degree-n polynomial is uniquely specified by its value at n+1
distinct x-coordinates.

Proof. If f and g are two degree-n polynomials which have the same value at
each of n+ 1 distinct x-coordinates, consider the polynomial f − g: it has n+ 1
roots but degree ≤ n; the only way for this to happen is if f − g = 0, that is,
f = g. SDG

So another way to “represent” a degree-n polynomial is by a list of n + 1
pairs (xi, f(xi)), i.e. some choice of n+ 1 distinct x-coordinates along with the
value of the polynomial at each.

How fast can we do operations given this representation?

• Addition: O(n). Just add corresponding y-values.

• Multiplication: O(n). Just multiply correpsonding y-values! Actually,
there is a subtlety here: the resulting polynomial may have degree 2n, so
we need to make sure we have values of the polynomials for at least 2n+1
points to start. (No big deal.)

• Evaluation: actually O(n2) using Lagrange’s formula.

The point is that these two representations represent a tradeoff: do we want
multiplication to be fast, or evaluation?

And this raises a natural question: how fast can we convert between the two
representations? If we can convert faster than O(n2) then we win!

a0, a1, . . . , an
// (x0, y0) . . . (xn, yn)oo

fast eval fast multiply

This is what FFT does: it can convert in O(n log n). So, for example, to multiply
two polynomials represented by their coefficients, we can convert to the set-
of-points representation in O(n log n), multiply in O(n), and convert back in
O(n log n), for a total time of O(n log n). The key will be to cleverly pick the
xi we will use as our points at which to evaluate the polynomial.

22 (L*) FFT

Details of FFT; see slides.

54

23 (L) Median/select

Remember the 3 components of divide & conquer:

• Divide input into subproblems somehow (split, partition, . . .)

• Recursively solve the subproblems (have faith they are correct!)

• Combine the answers

Don’t forget base case(s) as well.
To prove (by induction on size of input!):

• Prove base case(s) are correct

• Prove: if answers to subproblems are correct, then answer to whole prob-
lem is correct.

Array Median

Input: array of n integers.
Output: the median element, i.e. the bn/2c-smallest.

In groups: what’s the first algorithm you think of? How long does it take?
(Probably sort + return middle, Θ(n lg n).)

Can we do better? Get ideas.
Problem: if we e.g. split the array in half somehow and get the median of

both, that wouldn’t really help. The medians of the subarrays are not likely to
have any relationship to the median of the whole.

Solution: generalize! Let’s find not just the median, but take k as an input
and return the kth-smallest. Select(A, k): return the kth-smallest element of
array A. We can get median by calling Select(A, bn/2c).

Question: how should we split up the array? Just splitting down the middle
doesn’t really help. What’s a different way we could split up A (think in groups).
Hint: think of other divide & conquer algorithms you know. (Quicksort.)

Solution: pick a pivot element p (random!) and partition into A1 = all
elements < p and A2 = all elements ≥ p. Then if k < |A1| return Select(A1, k),
else return Select(A2, k − |A1|).

Prove correct. Analyze time complexity.

55

24 (P/L) Intro to dynamic programming

“Dynamic programming”—not really either. Name chosen by Richard Bell-
man in 1950 as something that sounded good to government / funding agencies.

Last week we looked at the divide and conquer technique: a problem gets
broken down recursively into subproblems. We’re still considering the same
phenomenon—dynamic programming is about what to do when the recursive
subproblems overlap. Basic idea: save answers to recursive subproblems (memo-
ization) so we don’t have to compute them more than once. DP has a reputation
for being difficult/confusing, but at heart it’s just this simple idea.

Example: Fibonacci numbers

Recall 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . , each number is the sum of the previous two.

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

Obvious recursive algorithm is too slow (in fact, it’s O(ϕn)).

Fibonacci #1: naive recursive algorithm

def fib1(n):

if n <= 1:

return n

else:

return fib1(n-1) + fib1(n-2)

Why is that? Draw out recursion tree for F5. Notice many redundant calls
to subproblems. The core idea of dynamic programming is extremely simple:
save the results of recursive subproblems so each only needs to be computed
once. Memoization.

We have two options (show fib.py):

• Create an array to hold Fn values and fill it in from 0 to n using a loop.
This is the “standard” DP solution. Pros: Efficient, works well even in
languages without good support for recursion. Con: we have to manually
figure out the correct order to fill in the array, so we have already computed
the answer to subproblems when we need them. Simple in this case, but
can be tricky in general.

Fibonacci #2: explicitly filling in a table with a loop

def fib2(n):

fibs = [0] * (n+1)

fibs[1] = 1

56

for i in range(2, n+1):

fibs[i] = fibs[i-1] + fibs[i-2]

return fibs[n]

• Keep our recursive function, but every time it is called, check whether the
answer for that input has already been computed and saved. If so, return
it; if not, compute it recursively, save it, and return it. Pros: simple to
code; we don’t have to worry about the right order in which to fill things
in. Cons: a bit more overhead; can run into recursion limits. (Plug for
functional programming: lazy, immutable arrays. . .)

Fibonacci #3: recursion with memoization

Keep a global table to remember the results of fib3

fibtable = [0,1]

def fib3(n):

Expand the table as necessary

while len(fibtable) < n+1:

fibtable.append(-1)

Fill in the table recursively (only if necessary)

if fibtable[n] == -1:

fibtable[n] = fib3(n-1) + fib3(n-2)

return fibtable[n]

Example: Low/High Stress Jobs

Consider the following table composed of n weeks where each week i has low
stress job that pays Li and a high stress job that pays Hi.

WEEK 1 2 3 · · · n
low stress L1 L2 L3 · · · Ln

high stress H1 H2 H3 · · · Hn

Each week you are allowed to pick either a low stress job or a high stress job,
however, picking a high stress job at week i means that you must take the week
before (i.e. week i− 1) off. Your goal is to maximize total income.

We’ve studied greedy algorithms; definitely the thing to try first. What
would a greedy algorithm look like? See Algorithm 13 below.

This algorithm basically looks ahead one week and decides if it’s worth taking
a week off in order to land a higher-paying job. However, this strategy fails,
because taking a high stress job at week hi means that you cannot take week
hi off to take a job at week hi+1. Thus, any strategy employing look-ahead by
a constant factor will fail. Here is a counter-example to the greedy algorithm.

57

Algorithm 10 GreedyJob

1: while i ≤ n do
2: if i < n and Hi+1 > Li + Li+1 then
3: Take week i off, choose Hi+1 and continue with i← i+ 2
4: else
5: Take Li and continue with i← i+ 1

WEEK 1 2 3
Low Stress 2 2 1
High Stress 1 5 10

• Greedy: 5 (week 2) + 1 (week 3) = 6

• Optimal: 2 (week 1) + 10 (week 3) = 12

The key to solving this problem is to come up with a recursive solution,
and then use dynamic programming. The key idea (common to many similar
problems) is to consider the most we could make if we worked only through week
i and then stopped. That is, define OPT (i) = maximum revenue for working
weeks 1 . . . i. Now, we can come up with a recurrence for OPT :

1. Base cases:

• OPT (0) = 0. We don’t make any money for working 0 weeks.

• OPT (1) = L1. We can’t take the high-stress job the first week. (Or
maybe we can—need to clarify problem parameters!)

2. OPT (i) = max{Li + OPT (i − 1), Hi + OPT (i − 2)}. First, note that if
we are going to maximize the profit for the first i weeks, we should always
work the final week. Thus, our decision is between working a high-stress
or low-stress job. Choosing a low-stress job at week i means we should
add Li to the optimal profit for the previous i − 1 weeks and choosing a
high-stress job at week i means we had to take week i− 1 off so we should
add Hi to OPT (i− 2). The optimal choice is to choose the max of these
two options.

Notice that OPT naturally forms a 1×(n+1) table where each entry requires
Θ(1) operations to fill in. We can fill in the table from 0 to n. So the whole
algorithm is Θ(n). This is the standard way to analyze the running time of a
DP solution.

We can also keep a table JOB(i) that tells us which choice we made at week
i (the low stress job or the high stress job) to recover which weeks we should
actually work. Start with choice at week n and work backwards through the
table. This technique is also standard. In more generality, typically we will be
taking some sort of max or min, but this gives us only the value of the max/min
and forgets which choice actually leads to it. We can always make a parallel
table that records the optimal choice. In many cases (when there are exactly

58

two choices) it will be a table of booleans. But we will see other examples where
it is a table of e.g. integers.

Do an example:

WEEK 1 2 3 4 5 6 7 8 9 10
Low Stress 2 2 1 7 5 20 3 19 10 13
High Stress 1 5 10 100 23 20 5 21 30 30

Show jobs.py:

def work_schedule(low, high):

n = len(low)

opt = [0] * n

take_high_job = [False] * n

If we’re only working one week, take the low-stress job.

opt[0] = low[0]

take_high_job[0] = False

for i in range(1, n):

How much could we make taking the low or high stress job?

low_total = low[i] + opt[i-1]

high_total = high[i] + (opt[i-2] if i > 1 else 0)

The optimal for weeks 1..i is the higher of the two

opt[i] = max(low_total, high_total)

Record which choice produced the higher total

take_high_job[i] = high_total > low_total

Finally, produce a work schedule: work backwards from the end

wk = n-1

schedule = []

while wk >= 0:

if take_high_job[wk]:

schedule = [’off’, ’HI’] + schedule

wk -= 2

else:

schedule = [’LO’] + schedule

wk -= 1

return (opt[-1], schedule)

59

25 (L*) Matrix chain multiplication

Suppose we have matrices A and B, where A is p× q and B is q× r. (To be
able to multiply them, the q has to match.) How many operations are needed
to compute the matrix product AB?

• The result AB will be a p× r matrix, so it has pr entries.

• To compute each entry of AB, we take a row of q entries from A and a
column of q entries from B and multiply them, then add the results. So
we do about q multiplications and q additions to compute each element of
AB.

Thus, the total time to compute AB is O(pqr). Note that we can assume
p, q, and r are small enough that fancy matrix multiplication algorithms like
Strassen’s algorithm don’t really help.

Matrix multiplication is associative, (AB)C = A(BC), but these may not
take the same time to compute! Let’s try an example. Say

• A is 2× 10,

• B is 10× 3,

• and C is 3× 20.

It takes 10 × 3 × 20 = 600 operations to compute BC, resulting in a 10 × 20
matrix. It would then take another 2 × 10 × 20 = 400 to compute A(BC), for
a total of 1000. On the other hand, if we associate the product as (AB)C, it
takes 2×10×3 = 60 operations to compute the 2×3 matrix AB, and then only
another 2 × 3 × 20 = 120 operations to compute (AB)C, for a total of 180—a
big difference!

With just three matrices the situation is simple: we can easily just do these
computations, compare, and choose the cheaper order. However, if we have a
sequence of n matrices we wish to multiply, the situation is more difficult. For
example, suppose we have six matrices A1 . . . A6 and want to compute their
product. We could associate them, for example, as (A1((A2(A3A4))A5))A6, or
as A1(A2(A3(A4(A5A6)))), or in fact in any of 42 distinct parenthesizations. We
really don’t want to check all of them to see which would be the cheapest. In
general, the number of parenthesizations for n matrices is the (n− 1)st Catalan
number

Cn =
1

n+ 1

(
2n

n

)
which for large n is approximately equal to

Cn ∼
4n

n3/2
√
π
,

60

so the number of possibilities becomes very large, very fast. The brute force
algorithm—i.e. checking all parenthesizations to see which is best—is completely
out of the question!

Formally, we have a sequence of n matrices A1, A2, . . . , An, and a sequence
of n+1 positive integers p1, . . . , pn+1 such that matrix Ai has size pi×pi+1. We
want to compute the parenthesization of the Ai which minimizes the number
of operations needed to compute the product A1 . . . An. (Note that this gen-
eralizes readily to any situation where we have a sequence of n things and an
associative binary operation where the cost of the operation varies depending
on the arguments it is applied to.)

Observation: ultimately, there will be some final two matrices that get mul-
tiplied to produce the final answer. These have to come from some splitting of
the sequence of matrices into two subproducts

(A1 . . . Ak)(Ak+1 . . . An).

The total cost to compute the product if we split at index k is then given by
the sum of the optimal cost to compute A1 . . . Ak, the optimal cost to com-
pute Ak+1 . . . An, and the cost to do the final matrix multiplication, which will
take p1pk+1pn+1 operations (because (A1 . . . Ak) is a p1 × pk+1 matrix, and
(Ak+1 . . . An) is a pk+1 × pn+1 matrix). The best possible cost for the product
A1 . . . An will then be the minimum cost over all such splitting points k. In
general, if we use m[i, j] to denote the minimum cost for computing the product
Ai . . . Aj , with i ≤ j, then we have the recurrence

m[i, i] = 0

m[i, j] = min
i≤k<j

(m[i, k] +m[k + 1, j] + pipk+1pj+1)

Note that m[i, i] = 0 since this corresponds to the base case of already having
a single matrix Ai, so we do not need to do any work.

We can store the m[i, j] values in an n × n matrix (actually, we just need
the part above the main diagonal since we assume i ≤ j). Note that each m[i, j]
depends on values to its left (m[i, k] where k < j) and below it (m[k + 1, j]
where k ≥ i). So we can fill in the matrix by diagonals, beginning by filling
in zeros along the entire main diagonal, then filling in values just above the
main diagonal, then the second diagonal above the main diagonal, and so on.
Note that the dth diagonal above the main diagonal consists of values of the
form m[i, i+ d], which corresponds to subproducts Ai . . . Ai+d of exactly d+ 1
matrices. So this seems intuitively sensible: first we compute the optimal way
to multiply any two adjacent matrices; then we compute the optimal way to
multiply any three adjacent matrices; then any four, and so on.

(Alternatively, we could arrange the matrix a bit differently, so that m[i, d]
would denote the optimal cost for multiplying Ai . . . Ai+d. Then we would
simply fill in the matrix by columns.)

The matrix m has size n × n, and we need to fill in half its entries, giving
a total of Θ(n2) entries to fill in. Each entry is computed as a minimum over

61

at most n costs, each of which takes O(1) to compute (just a few lookups,
additions, and multiplications). Thus the whole algorithm is O(n3).

Notice this has a similar problem as the high/low-stress jobs example: it
gives us the optimal cost but doesn’t tell us what the actual best parenthesiza-
tion is. This is a common issue with dynamic programming; the problem is that
when we take the minimum over all k for each entry in the matrix m, we forget
which k was best, recording only the best cost itself. The solution, therefore,
is to maintain another n × n matrix b which records the information that is
otherwise being forgotten: b[i, j] records the “best split”, that is, the value of k
(where i ≤ k < j) which results in the minimum cost for the product Ai . . . Aj .
After filling in the matrices m and b, we can reconstruct the best parenthesiza-
tion (which is really just a binary tree) by recursively splitting starting from the
top: we start by looking up b[1, n] = k which tells us where to do the top-level
split (A1 . . . Ak)(Ak+1 . . . An). We then recursively look up b[1, k] and b[k+1, n]
to find out where to make the next splits, and so on, until there are just single
matrices left at the leaves of the tree.

See MatrixChainFull.java for Java implementation.

62

26 (L) The Floyd-Warshall algorithm

Recall that Dijkstra’s algorithm solves the single-source shortest path problem
(i.e. it finds the shortest path from a single start vertex to every other vertex) for
weighted, directed graphs, as long as all edge weights are positive. Today we will
consider an algorithm to solve the all-pairs shortest path problem (find shortest
path between all possible pairs of nodes) on directed graphs with arbitrary
(possibly negative) weights.

Of course, negative cycles can pose a problem: if there is a directed cycle
whose total weight is negative, then we can keep decreasing the path weight
forever by just going around the cycle. In that case “shortest” paths may not
be well-defined. The algorithm we consider will also be able to detect this
situation.

Input: a directed, weighted graph G = (V,E) with vertices numbered 1 . . . n.
Output: ultimately, we want an n× n matrix s where s[u, v] records the length
of the shortest path from u to v, or an indication that the graph has negative
cycles. Ideally we also want to be able to recover the actual shortest path
between any two vertices u and v.

We want to come up with a recurrence. As is typical, we add another
parameter which we use to restrict the problem. In this case let’s add another
parameter k that means we are only allowed to use vertices 1 . . . k. That is, let
s[u, v, k] denote the length of the shortest path from u to v using only vertices
1 . . . k as intermediate nodes on the path.

Base cases?

s[u, v, 0] =


0 u = v

wuv (u, v) ∈ E
∞ otherwise

(Note we can’t say s[u, v, k] = 0 for k ≥ 0 because of negative edges!)
Now, what about the recursive case? Suppose we already know s[u, v, k] for

some k. Then how can we compute s[u, v, k + 1]? There are two possibilities:
either the best path from u to v goes through k + 1, or it doesn’t.

• It could be that allowing vertex k + 1 does not help, in which case

s[u, v, k + 1] = s[u, v, k].

• If it does help, the best path from u to v will consist of first taking the
best path from u to k+1 (using only vertices 1 . . . k), followed by the best
path from k + 1 to v:

s[u, v, k + 1] = s[u, k + 1, k] + s[k + 1, v, k].

The optimal cost will simply be the minimum of these two.
To be able to reconstruct paths after the fact, we could do something similar

to what we usually do: at each step we take a minimum over two choices, so we

63

could keep a parallel 3D table use[u, v, k] that records whether we should use
vertex k when trying to go from u to v using only vertices 1 . . . k. We could
then use this to reconstruct the optimal path from u to v as follows:

bestpath(u, v, k) =

{
bestpath(u, k, k − 1) + [k] + bestpath(k, v, k − 1)

bestpath(u, v, k − 1)

depending on whether use[u, v, k] is true (with some appropriate base cases as
well).

However, for this problem it turns out we can do something a bit more clever
using only a 2D array. In particular, let next [u, v] denote the next vertex after
u in the shortest path from u to v that we have found so far. Then in the first
case, when we set s[u, v, k + 1] to s[u, v, k], we do not change next [u, v]; in the
other case, we can update it as

next [u, v] = next [u, k + 1].

Also, we don’t actually need to keep a 3D array for s. We can simply keep
overwriting the same 2D array on each iteration of the loop. If we do that, it
is no longer true that s[u, v] is exactly the shortest distance using only vertices
1 . . . k on the kth iteration—but if not it can only be shorter.

Algorithm 11 Floyd-Warshall

1: s[u, v]←


0 u = v

wuv (u, v) ∈ E
∞ otherwise

2: next [u, v]← v for (u, v) ∈ E
3: for u← 1 . . . n, v ← 1 . . . n, k ← 1 . . . n do
4: if s[u, k] <∞∧ s[k, v] <∞∧ s[u, k] + s[k, v] < s[u, v] then
5: s[u, v]← s[u, k] + s[k, v]
6: next [u, v]← next [u, k]

After the algorithm is finished, to reconstruct the shortest path from u to v,
we simply look up each step along the path using the next matrix. First we look
up next [u, v] = u2, then we look up next [u2, v] = u3, and so on, until reaching
v.

What is the running time? It’s obviously Θ(V 3)—just three nested loops
from 1 . . . n. (Which seems kind of amazing given that there could be Θ(V 2)
edges and we need to find shortest paths between every pair of vertices, of which
there are also Θ(V 2).)

What about negative cycles? Well, just look at s[u, u, n]: u is part of a
negative cycle if and only if s[u, u, n] (the length of the shortest path from u
back to itself) is negative. Hence we can check whether there are any negative
cycles in the graph in Θ(n) time, by scanning along the diagonal of the matrix
and looking for any negative numbers.

64

As a fun aside, this algorithm is really cool because it can actually be gen-
eralized to work over any semiring instead of just (min,+) (technically, any
star-semiring), and it turns out that by appropriate choice of semiring, (a slight
generalization of) the same algorithm can be used to do a great many things,
such as find most reliable paths or largest capacity paths, count the number of
shortest paths or total number of paths or even compute regular expressions for
all possible shortest paths, compute transitive closures, invert matrices, solve
linear systems of equations, or convert a DFA into a regular expression.

65

27 (P/L) Amortized analysis: intro

Consider the following problem.

Input: an array B[0 . . .] representing a binary number n. (Each B[i] is a single
bit representing the coefficient of 2i. Assume B is sufficiently large so we don’t
have to worry about problems with overflow.)
Output: Increment the binary number, that is, modify B so that it represents
the number n+ 1.

Here is an algorithm to accomplish this:

Algorithm 12 Binary Increment

1: i← 0
2: while B[i] = 1 do
3: B[i]← 0
4: i← i+ 1

5: B[i]← 1

How long does this take?

• The best case is Θ(1): if the last bit of n is 0 then all we have to do is flip
it. The while loop never executes at all.

• The worst case is when n is of the form 2k − 1, that is, all 1 bits, and
to increment it we have to flip all the 1’s to 0s and then set the next 0
bit to 1. Since n requires Θ(lgn) bits to represent it, this means that
incrementing n takes Θ(lg n) in the worst case.

In practice, we rarely just increment a binary number a single time. More
realistically, we will be repeatedly incrementing it (perhaps it is a counter of
some sort). So how long does it take to start at 0, and increment n times?

• We can definitely say it is O(n lg n): we do n increment operations and
each increment takes O(lg n) in the worst case.

• We can also definitely say it is Ω(n): we do n increment operations and
each takes at least Θ(1).

This is a common situation: we have some operation that we want to do
repeatedly, and the operation does not always take the same amount of time.
We can easily give an upper bound and a lower bound, but we want to be able
to say something more precise about how long the entire sequence of operations
will take. For this we turn to amortized analysis. The idea of “amortization”
is to spread out big one-time costs more evenly (e.g. repaying a car loan or a
mortgage in monthly installments).

66

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
bit flips 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5

cumulative cost 0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31

Table 1: Cost of repeated increments

The first step is almost always to just try small examples, play around,
make a table, and notice patterns to come up with a guess. Let’s try it for
incrementing a binary counter. We’ll make a table with the counter value n and
the cumulative number of bit flips on the right-hand side. Remember we don’t
need a formula for the number of bit flips2; we are just trying to figure out how
fast it grows in relation to n.

We notice some patterns: whenever n is a power of two, the total number of
bit flips seems to be one less than the next power of two. In fact, in general it
seems that the cumulative number of bit flips is never more than 2n. Based on
this evidence, we conjecture that a sequence of n increment operations starting
from 0 actually takes Θ(n), the lower bound we derived from the best case,
rather than the worst-case upper bound of Θ(n lg n). Intuitively, it seems like
the “expensive” increment operations happen infrequently enough that they
don’t add too much to the total—we can “average out” their cost over the
whole sequence. In this case we say that a single increment operation takes
Θ(1) amortized time: each increment takes Θ(1) “on average”, even though an
individual increment operation could take longer.

So how can we prove this?

Accounting method

Imagine that each constant-time operation “costs” $1. The idea is to overcharge
for some operations and “save up” the extra money, so that we have enough
saved up to pay for expensive operations. In general, if we charge c·f(n) for some
operations and always have enough left over to pay for the other operations, then
we can say that each operation takes O(f(n)) amortized time.

In this example, we imagine that flipping a bit costs $1. Let’s charge $2
every time we flip a bit from 0 to 1. $1 will pay for the flip itself, and the other
$1 we imagine being saved next to the 1 bit. Later, when we need to flip the bit
back to 0, we will have $1 sitting there which we can use to pay for the flip.

000
$2−→ 001

$

$2−→ 01
$
0

$2−→ 01
$
1
$

$2−→ 1
$
00

Notice how every increment operation does exactly one 0→ 1 flip, for which we
pay $2. And it might do a bunch of 1 → 0 flips, but we get to do those “for
free” using the money we saved up from previous increments. All in all, if we
pay $2 for each increment we always have enough money to pay for all the bit

2Though it turns out in this case it is possible to come up with one!

67

flips (without ever going negative). Therefore, we conclude that the amortized
cost of a single increment operation is $2, that is, Θ(1).

As a fun aside, this analysis actually shows us how to come up with a precise
formula for the total number of bit flips needed to increment from 0 to n: after
doing n increment operations, we have paid $2n, but not all of that $2n has
actually been used. There is $1 sitting next to each 1 bit, and the rest of the
$2n has been used to pay for bit flips. So the total number of bit flips needed
to increment from 0 to n is exactly

2n−#n

where #n is the number of 1 bits in the binary representation of n.

68

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
incr cost 0 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 31
total cost 0 1 4 5 12 13 16 17 32 33 36 37 44 45 48 49 80

Table 2: Incrementing a counter when flipping bit i costs 2i

28 (L) Amortized analysis II

Direct counting method

Here’s another way we can prove that incrementing a binary counter takes Θ(1)
amortized time. AKA “just do some math”. Let’s add up the total number of
bit flips and see what we get. Notice that when doing a sequence of increments,
B[0] flips every single time (either 1 to 0 or 0 to 1). Then B[1] flips every other
time, B[2] flips every fourth time, . . . in general B[i] flips every 2ith time. So
when incrementing from 0 to n, bit B[i] flips a total of bn/2ic times. Thus, the
total number of bit flips is

blgnc∑
i=0

⌊ n
2i

⌋
<

∞∑
i=0

n

2i
= n

∞∑
i=0

1

2i
= 2n.

This is a sort of “brute force” method of proof which is straightforward when
you can get it to work. But sometimes it’s easier to use the accounting method.

Another binary counter example

Take the same binary counter incrementing example, but now suppose it costs
2i to flip bit i. The worst case for a single increment operation is now Θ(n),
since if we have to flip all the bits it will cost 20 + 21 + 22 + . . . which is
approximately equal to n. But once again, the total time to do n successive
increment operations is actually less than Θ(n2). Let’s again make a table
(Table 2) and look for patterns.

Looking at just the powers of 2 might reveal a useful pattern: 2→ 4, 4→ 12,
8→ 32, 16→ 80. It looks like each power of 2 is being multiplied by successive
integers (2×2, 4×3, 8×4, 16×5. . . in particular 2k is being multiplied by k+1.
So we conjecture that the total cost to increment from 0 to n is no greater than
n × (lg n + 1), which would mean that the amortized cost of each increment
operation is Θ(lg n).

We could also use the accounting method: every time we do an increment,
just put $1 on every bit, whether we flip it or not. (We have to decide up front
how many bits we are going to use.) Since bit i is flipped every 2i increment op-
erations, by the time we flip it we will have accumulated exactly enough money
to pay for its cost of 2i. Therefore, the amortized cost of a single increment is
the amount we actually pay: we pay $1 for each bit and there are Θ(lg n) bits.

69

[We could also use a direct counting method. Note that bit i is flipped only
once every 2i increments, and flipping it costs 2i. So each bit contributes a total
cost that is at most the total number of increment operations. There are lg n+1
bits, and each contributes a cost of at most n, for a total of at most n(lg n+ 1).]

Extensible arrays

Another example that should be familiar from Data Structures: extensible ar-
rays (e.g. ArrayList in Java). As our cost model, suppose accessing or modify-
ing an array entry costs 1, and allocating a new array and copying the contents
of an old array into it costs n (the length of the old array). Every time we do
an append operation, it might cost Θ(1) (if there is still enough space in the
underlying array) or it might cost Θ(n) if we have to allocate a bigger array,
copy all the elements over from the old array, and then insert the new element.
So we can definitely say that a sequence of n append operations is Ω(n) and
O(n2).

The question is, what strategy should we use for allocating a new array when
we run out of space? This turns out to have a big impact on the amortized time
of append.

• Strategy 1: increase the size by some constant c. That is, when our array
of size n becomes full, allocate a new array of size n + c and copy the
contents of the old array into it.

• Strategy 2: double the size. That is, when our array of size n becomes
full, allocate a new array of size 2n.

Let’s consider the amortized time for a single append operation using these
strategies.

• Strategy 1: suppose we start with an array of size c. (The starting size of
the array does not really change the analysis at all.) The first c append
operations will cost 1 each, and then the next will cost c + 1 (c to copy
the now-full array of size c, and 1 more to insert the new element). Then
there will be another c− 1 operations that cost 1 each until the new array
is full. The next will cost 2c + 1 (copy the full array of size 2c plus 1 to
insert). And so on.

In general, if we do n successive append operations, we will end up paying
n for the actual inserts, plus

c+ 2c+ 3c+ 4c+ · · ·+ bn/ccc

for array allocations. This is

c(1 + 2 + 3 + · · ·+ bn/cc) = c ·Θ((n/c)2) = Θ(n2).

So the total cost for n successive append operations is Θ(n) + Θ(n2) =
Θ(n2), and a single append has an amortized cost of Θ(n). In this case,
the cost of the expensive operations ends up dominating, even though
most of the calls to append are just Θ(1).

70

• Strategy 2: suppose we start with an array of size 1. If we do a sequence of
n append operations, of course we will still pay n for the actual insertions;
the question is how much we pay for array allocations. After the initial
array becomes full (immediately), we pay 1 to allocate a new array of size
2 and copy the element over. When that becomes full, we pay 2 to allocate
an array of size 4 and copy over the old elements. And so on. In total, we
will pay

1 + 2 + 4 + 8 + · · ·+ 2k,

where 2k is the biggest power of 2 which is less than n. But this sum is
2k+1 − 1 which is approximately 2n, that is, Θ(n). So the total cost of n
calls to append is Θ(n) + Θ(n) = Θ(n), and the amortized cost of a single
append is only Θ(1).

We can also prove this using the accounting method. Charge $3 for each
append. $1 goes to paying for the actual array insertion; the other $2 is
saved along with the inserted element. Each time the array becomes full,
it will look something like this:

1 3 19 −5 6
$$

8
$$

21
$$

0
$$

Since the array capacity was doubled the last time it was resized, for each
element already in the array there will be a newly inserted element with
$2 stored next to it. Therefore the total amount of money available is
equal to the number of elements in the array, and we can pay to allocate
a new array and copy all the elements over.

Thus, the amortized cost of a single append operation is $3, that is, Θ(1).

71

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
incr cost 1 1 1 4 1 1 1 1 9 1 1 1 1 1 1 16
total cost 1 2 3 7 8 9 10 11 20 21 22 23 24 25 26 42

Table 3: Table of costs with f(k) = k when k is square, 1 otherwise

29 (P*) More amortized analysis examples

Let’s consider another example. Suppose we are doing some sequence of opera-
tions where the kth operation takes f(k) = k time when k is a perfect square,
and f(k) = 1 otherwise. We can make a table and look for patterns (Table 3).
No obvious pattern jumps out at us. So let’s try a more direct approach. Sup-
pose we add up all the costs from 1 up to some n = m2:

total = 1 + 1 + 1 + 4 + 1 + 1 + 1 + 1 + 9 + · · ·+m2

We can separate out all the 1’s and the squares:

(1 + · · ·+ 1) + (1 + 4 + 9 + · · ·+m2)

We know there are exactly m2−m copies of 1 (though it actually doesn’t matter
all that much: we want an upper bound so it would be enough to say the sum
of all the 1’s is less than m2). So the sum is

(m2 −m) +

m∑
j=1

j2.

We can look up a formula for the sum of squares, and find this is equal to

m2 −m+
m(m+ 1)(2m+ 1)

6
.

We could do a bunch of algebra at this point, but we don’t need to: all we care
about is that this is clearly Θ(m3). Note, however, that n = m2, so the sum is
Θ(n3/2). Hence the amortized time for a single operation is Θ(

√
n).

We said earlier that no pattern jumped out at us from the table—but really
that’s just because we didn’t try hard enough. We are computer scientists, we
don’t have to just stare at things with our eyeballs! Make a spreadsheet, or
write a program to generate a bunch of data points, and fit a curve to it. This
gives us a good guess to start from.

72

30 (L) Binomial Heaps

Recall the heap data structure—a complete binary tree where the value at each
node is less than the values at both its children. This lets us implement priority
queues with Θ(lg n)-time insert, delete minimum, and change-key operations.

Consider the merge operation: given two priority queues, merge them into a
single combined priority queue. This is a natural and useful operation in many
applications. Unfortunately, heaps do not support this operation at all. The
best one can do is to just list all the elements in the two heaps and then build
a new heap out of the elements; this takes linear time. Can we do better?

Definition 30.1. Binomial trees are defined as follows:

• A binomial tree of order 0 is a single node.

• A binomial tree of order n consists of a root node with n subtrees, which
are binomial trees of order n− 1, n− 2, . . . , 0.

Lemma 30.2. A binomial tree of order n has 2n nodes.

Proof. By induction on n. An order-0 binomial tree has 20 = 1 node. If we
assume this is true for binomial trees of order < k, then a binomial tree of order
k has

1 + 2k−1 + 2k−2 + · · ·+ 20 = 2k

nodes. SDG

Remark. Binomial trees are called binomial since a binomial tree of order n has(
n
k

)
nodes at depth k. This can also be proved by induction, using some facts

about binomial coefficients (just think about adding a row of Pascal’s triangle
shifted against itself to get the next row).

Lemma 30.3. We can make a binomial tree of order n out of two binomial
trees of order n − 1, by attaching one of the trees as the leftmost child of the
other tree’s root node.

Definition 30.4. A binomial heap is a list of binomial trees such that:

• Each binomial tree satisfies the heap property (each node is smaller than
all its children)

• There is at most one binomial tree of any given order.

73

8

21

99

17

5

77

28

13

24

53

33

23

12

We usually keep the list of binomial trees sorted from smallest to biggest
order, stored using a linked list. (I will draw them sorted from right to left.)
Notice that a binomial heap acts a lot like a binary number: since binomial
trees have sizes that are powers of two, and a binomial heap has at most one
tree of any given order, it is not hard to see that a binomial heap with n total
elements has a binomial tree of order k if and only if the 2k bit of the binary
representation of n is a 1. For example, the heap illustrated above has 13 nodes,
132 = 1101, and indeed the heap has one tree of order 1, one of order 4, and
one of order 8. This also means a binomial heap of size n contains O(lg n) trees,
from order 0 up through order blg nc.

To merge two binomial trees of the same order, just see which one has the
bigger root, and make it the leftmost child of the smaller root. This takes Θ(1)
time.

To merge two binomial heaps A and B, we can do what amounts to addition
of binary numbers. Iterate through them in parallel. For each order k we have
possibly a binomial tree of order k from A, possibly a tree of order k from B,
and we also may possibly have a carry tree of order k, just like we can carry a
1 bit when adding binary numbers. (When we start out at k = 0 we have no
carry tree.)

• If there are no trees of order k, the output has no trees of order k. (0+0 =
0.)

• If there is only one tree of order k, just copy it to the output. (0 + 1 = 1.)

• If there are two trees of order k, merge them into a single tree of order
k + 1 and make it the carry tree for the next iteration; the output has no
trees of order k. (1 + 1 = 10, so output 0 and carry the 1.)

• If there are three trees of order k, copy one of them to the output, and
merge the other two into an order-(k + 1) carry tree. (1 + 1 + 1 = 11:
output 1 and carry 1.)

Each iteration of the above algorithm takes constant time: we may have to
merge two trees but that takes constant time. So merging two binomial heaps
of size n can be done in Θ(lg n) time, since we do Θ(1) work for each order from
0 up to blg nc.

Now, let’s see how we can implement the other priority queue methods as
well:

74

• Insert: to insert a new element x into a binomial heap H, make x into a
size-1 binomial heap (containing a single order-0 binomial tree) and then
merge it with H. This is just like incrementing a binary counter! So
although it is O(lg n) in the worst case, it takes Θ(1) amortized time.
(This is even better than a standard binary-tree based heap, which always
takes Θ(lg n) to insert!)

• Delete-min: iterate through the roots of all the trees to find the smallest
in Θ(lg n) time (the smallest element in the entire heap is guaranteed to be
one of the roots). Removing it leaves its children, which are binomial trees
of order k − 1, k − 2, . . . , 0: a binomial heap! Just merge this remaining
binomial heap with the rest of the heap in Θ(lg n) time. So overall delete-
min takes Θ(lg n). (Note we can also keep track of the minimum root so
that finding the minimum can be Θ(1), even though removing it still takes
Θ(lg n).)

• Change-key: just bubble the key up or down within its binomial tree
until it is at the right spot. This takes O(lg n).

31 (L*) Potential method and splay trees

There is one more method we can use to prove amortized time bounds, called
the potential method, which comes from an analogy with physics. The idea is to
think of a data structure as having some “potential energy”. Operations on the
data structure will sometimes increase the potential energy (storing up some
extra energy that can be used later) and sometimes decrease it (releasing some
of the stored energy). The amortized cost of an operation is the actual cost of
the operation plus the change in energy. The change in energy can be positive
(in which case the amortized cost is more than the actual cost, and some energy
is stored for later) or negative (in which case the amortized cost is less than the
actual cost, using up some of the stored energy to pay for the difference).

Consider a sequence of operations on a data structure, and let Di denote the
state of the data structure after the ith operation, and Φi the potential energy
of Di. Then the amortized cost of the ith operation (which turned Di−1 into
Di) is defined as

ai = ci + Φi − Φi−1

where ci is the actual cost of the operation. Therefore the amortized cost of the
sequence of operations is

n∑
i=1

ai =

n∑
i=1

(ci + Φi − Φi−1) =

(
n∑

i=1

ci

)
+ Φn − Φ0.

We need the total amortized cost to be an upper bound on the actual cost,
and we can see this will happen as long as Φn − Φ0 ≥ 0, which motivates the
following definition:

75

Definition 31.1. Φ is valid if Φi − Φ0 ≥ 0 for all i.

If a potential energy function Φ is valid, it means that the total amortized
cost will always be at least the total actual costs, that is,

n∑
i=1

ai ≥
n∑

i=1

ci.

So the general technique is to define a potential energy function Φ which starts
out as 0 on the initial data structure, and always remains nonnegative. Given
such a valid potential function, the amortized cost of an operation (defined as
the actual cost plus the change in potential energy) gives a valid bound on the
average cost of a single operation.

Note that this can be seen as a generalization of the accounting method:
the amount of “extra money” stored in a data structure can be thought of as
“potential energy”. But the potential method makes it more clear that the
energy does not have to be an integer, nor does it have to be “stored” anywhere
in particular. In some cases this leads to an easier analysis even though in theory
we could do the analysis using the accounting method (with weird fractional
amounts of money stored in a “bank account”).

Splay trees

As a fascinating application of the potential method we will study splay trees, a
sort of “self-balancing” variant of binary search trees. Recall that binary search
trees give us Θ(lg n) insert, lookup, and delete for ordered data, as long as the
trees remain balanced. But if the tree becomes unbalanced these turn into O(n)
instead. In some applications it does not matter; if a binary search tree is built
randomly it is very likely to be balanced. However, in many applications the
data may have characteristics that lead to an unbalanced tree (for example,
the data may be already sorted or close to sorted, in which case inserting it
sequentially into a naive BST creates an unbalanced tree). There are various
ways to solve this problem. What most people think of are sophisticated BST
variants, such as red-black trees and AVL trees, which work by storing extra
information in the trees and then using this extra information to make sure the
trees remain balanced. Practically speaking, these are some of the best BST
implementations, but they are complex, and require reimplementing all the BST
methods to ensure that the extra information is kept up-to-date and that the
tree is rebalanced as necessary.

Splay trees are an intriguing alternative: a splay tree is just a normal binary
search tree, with no extra information stored anywhere. The twist is that we
implement an extra splay operation which works to make the tree a little more
balanced, and we use this operation in conjunction with other operations such
as lookup and insert, in such a way that the tree tends to stay balanced.

In particular, the Splay operation works by bringing a particular element
to the root of the BST (while keeping all the same elements in the tree and

76

preserving the BST properties). It uses a particular algorithm that we will
explore shortly. However, given such an operation that brings a chosen node to
the root of a BST, let’s see how we update the other BST operations to use it:

• Insert: Whenever we insert a new value into the splay tree (which works
just like normal BST insertion), we then splay the newly inserted element
to the root.

• Lookup: Similarly, lookup works just like in a normal BST; but after
doing a lookup we splay the looked up element (or the closest element, in
the case that the element being searched for is not in the tree).

• Join: If all the elements in T1 are less than all the elements in T2, we can
join them into a single BST by first splaying the largest element in T1 to
the root, then adding T2 as its right child (if the largest element is at the
root of a BST, by definition it has no right child, so there is a clear space
to add T2).

• Split: To split a BST into two BSTs which contain all the elements less
and greater than a particular target element, respectively, splay the target
element to the root and then return its two children.

• Delete: Splay the item to be deleted to the root, then join the two
subtrees. (This is only a minor point, but notice how much nicer this is
than the usual BST delete implementation!)

Let’s see how Splay actually works. We find the element x in the tree
and then keep moving it up the tree until it reaches the root, according to the
following three rules. In general we will use p to denote the parent of x and g
to denote its grandparent.

• ZIG. If x is the child of the root of the whole tree, then just do one
rotation to move it to the root.

CB

p

A

x

C

BA

x

p

A, B, and C denote arbitrary subtrees. We don’t do anything to them
at all, so the rotation takes constant time; we just need to update a few
references. In the diagram, x is the left child of the root, so we rotate
right, but there is also a second entirely symmetric case when x is the
right child of the root and we rotate left.

Note how doing a rotation moves x up while preserving the binary search
tree properties: all the elements in the subtree A are still to the left of
x; all the ements in B remain in between x and p; and C remains to the
right of p.

77

• ZIG-ZIG. If x and p are either both left children or both right children,
then do two successive rotations: first rotate around g → p then around
p→ x.

DC

g

B

p

A

x

DC

g

BA

x

p

D

C

BA

x

p

g

Some things to note:

– This rule applies anywhere in the tree, unlike ZIG which only applies
when x is at a depth of 1. After applying ZIG-ZIG, x has moved
two levels closer to the root.

– Like ZIG, this takes constant time, since we just do two rotations.

– Again, in the picture x and p are illustrated as both being left chil-
dren, but there is an analogous symmetric case when x and p are
both right children.

• ZIG-ZAG. If p is a left child and x a right child, or vice versa, first rotate
around p→ x and then around g → x.

DC

g

BA

p

x

D

C

BA

p

x

g

D

CB

x

A

p

g

32 (L*) Analysis of splay trees

Let’s start with some interactive examples to see how splay trees work in prac-
tice, and to gain some intuition for what we are trying to prove. For example,
if we start with the tree on the left below, the next tree shows what we get if
we splay 5 to the root; the tree after that shows what we would get if instead
splay 4 to the root (starting from the tree on the left again); and so on. You
can see that as we splay an element from deep in the tree, the other elements
tend to “clump up” in twos due to the way we iterate the ZIG-ZIG rule.

6

4

2

1

3

5

0

5

3

2

4

60

1

6

4

3

5

0

1

2

5

4

6

0

1

2

3

6

5

0

1

2

3

4

6

0

1

2

3

4

5

0

1

2

3

4

5

6

78

And here is what happens when we iterate the ZIG-ZAG rule: starting
from the tree on the left, splaying different elements results in the trees on the
right:

4

5

6

2

1

0

3

5

6

3

2

1

0

4

3

4

5

6

1

0

2

6

3

4

2

1

0

5

3

4

2

5

60

1

3

4

2

5

1

0

6

3

4

2

5

1

6

0

In this case you can see that zigzags tend to get “unzipped” into two subtrees,
one with the small nodes and one with the large nodes.

We think of unbalanced trees as being “tense”/having a high potential en-
ergy; the splay operation tends to “relax” them, i.e. use some of the stored
potential energy to do its work and then leave the tree in a lower-energy state.
Doing lots of random splay operations tends to result in a balanced-ish tree.
For example, if we start with a (very unbalanced) linear chain of 100 nodes
numbered 0 to 99, and do 500 random splay operations, here is (one possible)
result:

98

99

97

93

94

95

89

88

90

8684

85

87

83

82

81

91

78

77

79

80

92

75

72

73

71

69

66

67

68

70

74

76

96

64

63

60

59

58

61

55

56

54

57

62

51

52

50

53

46

47

44

42

41

43

45

48

49

38

39

36

32

31

33

34

35

37

28

27

29

24

23

22

25

26

30

18

19

20

15

16

17

21

12

13

86

7

9

10

11

42

3

5

14

400

1

65

In fact, it turns out this still works even if the splay operations aren’t random:
even if we have an evil adversary who is trying to choose splay operations which
are as bad as possible for us, the tree will still tend towards balance! Intuitively,
splaying an item that is already near the top of the tree doesn’t take very long;
on the other hand, splaying an item that is deep in the tree takes a while but
tends to make the rest of the tree more balanced. So the evil adversary can’t
win.

Theorem 32.1. The Splay operation takes amortized Θ(log n) time.

We note first that this implies all the other methods (in particular Insert,
Lookup, Delete) will take amortized Θ(log n) time as well. For Insert and

79

Lookup, this is because they have exactly the same cost as splaying: when
we lookup or insert, we travel down the tree, paying a cost proportional to the
depth of the node we find or insert; then splaying that node to the root has
exactly the same cost, since we travel back up exactly the same path, doing
one rotation per level of depth. For Delete, this is simply because it works by
doing two Splay operations.

To prove this, we will use the potential method.

Definition 32.2. If r is some node in a binary search tree, let S(r) be the size
of the subtree rooted at r, that is, the number of nodes which have r as their
ancestor (including r itself).

Definition 32.3. The rank of a node r is defined by R(r) = log2(S(r)).

Finally, let Φ be the sum of the ranks of all the nodes in the tree, that is,

Φ =
∑
r∈T

R(r).

(Note this is kind of weird and definitely not an integer! So thinking of this in
terms of money would probably not work very well.) For example, consider this
tree:

Its three leaves all have size 1 and hence rank 0 (since log2 1 = 0); the internal
node has size 3, and the root has size 5, so Φ for this tree is log2 3 + log2 5. On
the other hand, this tree:

has a Φ value of log2 5 + log2 4 + log2 3 + log2 2 + log2 1 = 3 + log2 5 + log2 3. In
general, Φ will be higher for more unbalanced trees.

We note that Φ is a valid potential function (according to the definition
given previously): Φ for an empty tree is 0, and by definition it is clearly always
positive. So the amortized time for an operation, that is, the sum of the actual
cost and the change in potential,

a = c+ ∆Φ,

80

will be a valid upper bound on the average cost of a single operation.
Before starting in on the proof proper, we will need a couple observa-

tions/lemmas about properties of the log2 function.

Observation 5. log2 is an increasing function. So, if S(x) > S(y) then R(x) >
R(y). In particular this means that R(x) > R(y) whenever x is an ancestor of
y.

Lemma 32.4. On the interval 0 < x < 1, the function log2(x) + log2(1 − x)
attains a maximum value of −2 (namely, when x = 1/2).

Proof. Straightforward application of standard calculus techniques. SDG

Remark. To get a more intuitive idea of why this is true, recall what the graph
of log2(x) looks like on the interval 0 < x < 1: it lies below the x-axis, passing
through the points (1/2,−1) and (1, 0), with a vertical asymptote as it diverges
to −∞ as x→ 0. We are adding up the log2 of two values which are symmetric
about the point x = 1/2. If we pick x = 1−x = 1/2 then the sum is −2. As we
move the two points farther away from each other, the one moving left moves
much faster in the negative y direction than the one moving to the right moves
in the positive y direction, so the sum gets more negative.

We want to talk about the rank of nodes before and after applying the splay
rules. In general, for a node x we will use R(x) to refer to the rank of x before
applying a rule, and R′(x) to refer to its new rank after applying the rule.

Important note: to understand the following proofs you really have to be
looking at the pictures for the different splay rules!

Lemma 32.5. The amortized cost of a ZIG operation is ≤ 3(R′(x)−R(x))+1.

Proof. The amortized cost is defined as the actual cost plus the change in po-
tential. In this case the actual cost of ZIG is 1 rotation. As for the change in
potential, the ranks of x and p may change, but note that the ranks of all nodes
in the subtrees A, B, and C do not change. Note also that the old rank of p is
the same as the new rank of x (since p used to be the root of the whole tree,
but afterwards x is, so the new x has the same number of nodes under it as the
old p did). So the amortized cost is

1 +R′(p)−R(p) +R′(x)−R(x)
= { R′(x) = R(p) }

1 +R′(p)−R(x)
< { R′(p) < R′(x), since p is now a child of x }

1 +R′(x)−R(x)
< { R′(x) > R(x), hence R′(x)−R(x) is positive }

1 + 3(R′(x)−R(x))

SDG

81

Lemma 32.6. In the context of the ZIG-ZIG operation, 2 ≤ 2R′(x)−R(x)−
R′(g).

Proof.

R(x) +R′(g)− 2R′(x)
= { definition of R }

log2(S(x)) + log2(S′(g))− 2 log2(S′(x))
= { properties of log }

log2(S(x)/S′(x)) + log2(S′(g)/S′(x))
≤ { see below }
−2

For the final step, note that S(x) +S′(g) ≤ S′(x) (since the original tree rooted
at x and the new tree rooted at g are completely disjoint, and all the elements
of both have x as an ancestor in the new tree), so

S(x)

S′(x)
+
S′(g)

S′(x)
=
S(x) + S′(g)

S′(x)
≤ 1.

Therefore, the bound of −2 follows from Lemma 32.4.
The lemma as stated now follows by negating both sides of the inequality

(and flipping the inequality appropriately). SDG

Lemma 32.7. The amortized cost of a ZIG-ZIG operation is ≤ 3(R′(x) −
R(x)).

Proof. The actual cost of ZIG-ZIG is 2 rotations; the only nodes whose ranks
change are x, p, and g. So the amortized cost is

2 +R′(g)−R(g) +R′(p)−R(p) +R′(x)−R(x)
= { R(g) = R′(x) }

2 +R′(g) +R′(p)−R(p)−R(x)
< { R(x) < R(p), so −R(p) < −R(x) }

2 +R′(g) +R′(p)− 2R(x)
< { R′(p) < R′(x) }

2 +R′(g) +R′(x)− 2R(x)
≤ { Lemma 32.6 }

(2R′(x)−R(x)−R′(g)) +R′(g) +R′(x)− 2R(x)
= { algebra }

3(R′(x)−R(x)).

SDG

Lemma 32.8. The amortized cost of a ZIG-ZAG operation is ≤ 3(R′(x) −
R(x)).

Proof. Omitted; very similar to the proof for ZIG-ZIG. SDG

82

Now we have finally built the tools we need to prove the original theorem:
that Splay takes Θ(log n) amortized time.

Proof. The amortized cost of a Splay operation is the sum of the amortized
costs of each of the rule applications as x makes its way up the tree; we have
shown that each of these costs at most 3(R′(x) − R(x)), except possibly one
final ZIG application which takes at most 1 + 3(R′(x) − R(x)). Note that in
each case, the R′(x) from one step becomes the R(x) for the next step, and so
the sum telescopes, with all of the intermediate R values cancelling, leaving at
most

3(R(t)−R(x0)) + 1,

where t denotes the root of the entire tree (where x ultimately ends up) and
x0 denotes the starting location for x. The size of the tree t is of course n, so
R(t) = log2(n). Also, in the worst case, x had to start all the way down at a
leaf, which has R(x0) = log2(1) = 0. Therefore the amortized cost is bounded
by 3 log2 n+ 1, which is O(log n). Of course, it is clear that the cost has to be
at least Ω(log n) as well, since the height of a tree of size n is at least log2 n.
Therefore Splay takes amortized Θ(log n) time. SDG

83

33 (P/L) Introduction to network flow

This week we will look at flow networks which effectively model a diverse
set of problems in project selection, airline scheduling, network packet routing,
congestion control, baseball elimination, supply chains, image segmentation. . .

Definition 33.1. A network is a

• directed graph G = (V,E),

• a source vertex s ∈ V (with only outgoing edges),

• a sink vertex t ∈ V (with only incoming edges), and

• a capacity function c : E → R+ mapping each edge e to a non-negative
capacity c(e).

Definition 33.2. A flow on G is a function f : E → R+ mapping edges to real
numbers such that

1. 0 ≤ f(e) ≤ c(e) for each edge e ∈ E (that is, the flow along an edge is
limited by the edge’s capacity).

2. What flows in must flow out: for each vertex other than s or t,∑
e entering v

f(e) =
∑

e leaving v

f(e).

84

We will abbreviate the above as

f in(e) = fout(e).

Definition 33.3. The value of a flow f is defined as the amount of flow leaving
the source:

v(f) = fout(s).

Note that because the total flow must be preserved at each vertex, it should
be intuitively clear that

fout(s) = f in(t)

so we could equally well define the value of a flow v(f) as the amount of flow
arriving at the source. In fact, proving this formally is a good exercise.

Lemma 33.4. fout(s) = f in(t), that is, “what leaves s must eventually arrive
at t”.

Proof. Note first that∑
v∈V

fout(v) =
∑
e∈E

f(e) =
∑
v∈V

f in(v).

The middle sum is just the sum of the flows along every edge. But since every
edge has exactly one start vertex, the flow along any given edge gets included
exactly once in the left-hand sum (as part of fout(v) for its start vertex). Like-
wise, each edge is included exactly once in the right-hand sum, with its end
vertex.

Since the left- and right-hand sums are equal, we have

0 =

(∑
v∈V

fout(v)

)
−

(∑
v∈V

f in(v)

)
=
∑
v∈V

(fout(v)− f in(v)).

But by definition of a flow (property 2), fout(v)− f in(v) = 0 for every vertex v
other than s or t. Note also that f in(s) = 0 and fout(t) = 0. Hence everything
in this sum cancels except

fout(s)− f in(t).

Thus we have shown fout(s)− f in(t) = 0, that is, fout(s) = f in(t). SDG

Max Flow Problem

Definition 33.5. The max flow problem asks, given a network G, what is
the flow with maximum value?

How should we design an algorithm for the maximum flow problem? Well,
let’s try a greedy strategy, which looks for an unsaturated path from s to t (that
is, a path for which the flow along every edge is less than the edge’s capacity),
increases (augments) the flow along that path as much as possible, and then
repeats until no unsaturated path is left.

85

Algorithm 13 GreedyFlow

1: Initialize f(e)← 0 for all e ∈ E
2: repeat
3: Find an unsaturated path P from s to t
4: a← minimum excess capacity c(e)− f(e) among all edges e ∈ P
5: f(e)← f(e) + a for each edge e ∈ P
6: until 1no more unsaturated s→ t paths

Unfortunately this does not work. We may get stuck in a “local optimum”
where there are no more unsaturated paths, but we have not found the globally
maximum flow. Here is an example:

a
1

��
1

��

s

1

??

1
��

t

b

1

@@

Clearly the max flow in this network is 2 (send one unit of flow along the top
and another unit along the bottom). However, if the algorithm happens to pick
the path s→ a→ b→ t the first time through the loop, we end up with this:

a
0/1

��
1/1

��

s

1/1
??

0/1 ��

t

b

1/1

@@

and there are no longer any unsaturated paths from s → t. The problem is
that we shouldn’t have picked the middle edge, but there’s no way to know that
ahead of time, and we have no way to “undo” our choice once we have made it.

However, all is not lost! We can actually keep the basic outline of the greedy
algorithm. We really just need to allow ourselves to undo or “push back” flow
if we find somewhere better for it to go.

Residual Networks

For a given network G and flow f , we define the residual network Gf . The
residual network has the same vertices as G and essentially has two edges for
each edge e = (u, v) in G: one from u to v with capacity equal to the remaining
capacity c(e)− f(e), and one “backwards” edge from v to u with capacity equal

86

to the flow flow f(e) along e. The backwards edge allows us to “retract” some
of the flow along e. The only wrinkle is that we don’t include edges with zero
capacity, so some edges of G only have one corresponding edge in Gf : those with
zero flow (which have only a corresponding forward edge) or those at maximum
capacity (which have only a corresponding backward edge).

[Show example.]
Formally,

Definition 33.6. Given a network G = (V,E) and a flow f on G, we define
the residual network Gf as Gf = (V,Ef), with

Ef = {e ∈ E | c(e)− f(e) > 0} ∪ {eR | e ∈ E, f(e) > 0}

(where eR denotes the reverse of edge e) and we define the capacities of edges
in Ef by

• cf (e) = c(e)− f(e), and

• cf (eR) = f(e).

[Show example.]
The Ford-Fulkerson algorithm uses the residual network instead of the orig-

inal network to find augmenting paths.

Algorithm 14 Ford-Fulkerson

1: f(e)← 0 for all e ∈ E
2: while there exists any path P from s to t in Gf do
3: α← min{cf (e) | e ∈ P}
4: f(e)← f(e) + α for each e ∈ P such that e ∈ E
5: f(e)← f(e)− α for each e ∈ P such that eR ∈ E

We execute lines 3, 4 and 5 because we have found an augmenting path in
the residual network.

87

34 (L) Network flow: max flow/min cut exam-
ples and intuition

Start with example of running Ford-Fulkerson on big graph, to refresh our mem-
ories. Here’s what the graph ends up looking like at the end:

(The min capacity cut (A,B) is also highlighted—see later notes.) And
here’s what the residual network looks like:

88

Notice there are no remaining s-t paths in the residual network.

Observation 6. Augmenting along an s-t path in the residual network always
preserves the flow properties. (The changes to the flow values adjacent to a
given vertex always cancel out.)

Observation 7. Augmenting along an s-t path in the residual network always
increases the value of the flow.

This is because any s-t path in Gf has to start along some outgoing edge
from s, which corresponds to an outgoing edge from s in G. So when we augment
along the path we increase the flow along that edge, which by definition increases
the value of the flow.

Corollary 34.1. The Ford-Fulkerson algorithm terminates (the flow can’t keep
getting bigger forever).

OK, but we still don’t know if it will terminate with the max flow! For all we
know it could still get stuck in some local maximum, which can’t be augmented
even though there is some other flow with a bigger value.

Today we will start in on one of the great duality results in computer
science—that the maximum flow of a network is equivalent to the minimum
cut of a network. Along the way, we will also show that f is a max flow if
and only there are not augmenting paths in Gf , which proves the correctness
of Ford-Fulkerson.

Definition 34.2. An s-t cut is a partition of V into two sets (A,B) where
s ∈ A and t ∈ B.

89

Definition 34.3. The capacity of an s-t cut is the total capacity of all edges
crossing the cut, that is,

c(A,B) =
∑

e leaving A

c(e).

(Of course if an edge leaves A then it must enter B, that is, cross the cut.)

Show some examples—one “nice” and one crazy. Examine capacity of each.

Definition 34.4. The min cut is the s-t cut with minimum capacity.

Definition 34.5. The net flow of a cut (A,B) with respect to a flow f is∑
e leaving A

f(e)−
∑

e entering A

f(e),

i.e. the difference between the flow leaving A and the flow entering A. (We
could thus call it A’s “net exports”.)

If we imagine the vertices of A being “clumped together” around the source
vertex, then it’s clear what should happen: there will be no flow coming in to
A, and the flow going out will just be equal to the value of the flow. But A
could be crazier—it could consist of a bunch of vertices scattered all through
the graph. They don’t even have to be connected. So what can we say about
the net flow in general? Do some examples!

35 (L) Network flow: max flow/min cut

Lemma 35.1 (Flow Value Lemma). Let f be any flow and let (A,B) be any
s-t cut. Then the net flow of (A,B) with respect to f equals the value of f .

Proof.

v(f) = fout(s) (1)

=
∑
v∈A

(fout(v)− f in(v)) (2)

=
∑

e leaving A

f(e)−
∑

e entering A

f(e) (3)

= net flow of (A,B) (4)

Line 2 follows because fout(v) = f in(v) for all v ∈ A besides s. (Remember
that t /∈ A.)

To go from line 2 to line 3, consider all the edges with at least one endpoint
in A.

90

• If an edge has both endpoints in A, its flow contributes twice to the sum
in line 2, once positively and once negatively, and the two cancel out.
(Intuitively: moving stuff around within A does not affect its net exports.)

• Edges leaving A contribute positively to the sum.

• Edges entering A contribute negatively to the sum.

Hence we are left with line 3. Line 4 follows since line 3 is just the definition of
net flow. SDG

Lemma 35.2 (Bottleneck Lemma). Let f be any flow and (A,B) be any s-t
cut. Then v(f) ≤ c(A,B).

Proof.

v(f) =
∑

e leaving A

f(e) −
∑

e entering A

f(e)

≤
∑

e leaving A

f(e)

≤
∑

e leaving A

c(e)

= c(A,B)

SDG

Remark. From the proof we can see that v(f) = c(A,B) exactly when (1) there
is no flow entering A and (2) every edge leaving A is at max capacity.

Corollary 35.3. Given some flow f and s-t cut (A,B), if v(f) = c(A,B) then
f is a max flow and (A,B) is a min cut.

Proof. No other flow f ′ could be bigger than f since v(f ′) ≤ c(A,B). Likewise,
no other cut could have smaller capacity than (A,B), since it has to be at least
as big as the value of f . SDG

Theorem 35.4 (Max flow/min cut). Let f be any flow on a network G. The
following are equivalent:

1. v(f) = c(A,B) for some cut (A,B).

2. f is a max flow.

3. There are no s-t paths in the residual network Gf .

Proof. We will prove that 1⇒ 2⇒ 3⇒ 1.

• 1⇒ 2 is just Corollary 35.3.

• 2⇒ 3 because of Observation 7: if there were an s-t path in Gf , then we
could increase the flow along that path, so f would not be a max flow.

91

(3⇒ 1) is more interesting. Define an s-t cut (A,B) as follows:

• A = all nodes reachable from s in Gf .

• B = everything else.

Notice that

• s ∈ A (s is trivially reachable from itself).

• t ∈ B (t can’t be in A, since we assumed there are no s-t paths in Gf).

By the Flow Value Lemma,

v(f) = net flow of (A,B) =
∑

e leaving A

f(e) −
∑

e entering A

f(e)

Note that each edge (u, v) leaving A must be filled to capacity, since other-
wise there would be a forwards edge from u to v with the remaining capacity in
Gf , but then by definition we would have v ∈ A. Similarly, each edge entering
A must have 0 flow since if it didn’t, there would be a backwards edge from v
to u in Gf , and then u would be in A.

Hence, we have

v(f) =
∑

e leaving A

f(e) −
∑

e entering A

f(e) =
∑

e leaving A

c(e) = c(A,B).

SDG

Corollary 35.5. The Ford-Fulkerson algorithm is correct.

Proof. We already know Ford-Fulkerson terminates, and it ends when there are
no s-t paths in Gf . By the theorem, this means it has found a max flow f . SDG

The proof of the max flow/min cut theorem actually shows something more:
the Ford-Fulkerson algorithm can also be used as an algorithm to find a min
cut. Just run the algorithm until it stops, and then do a DFS or BFS from s in
the residual network Gf to find all the connected vertices, which make up one
side of the min cut.

Bonus section: applications of network flow

• Maximum bipartite matching: given an arbitrary bipartite graph with
edges between two sets of vertices L and R, we want to find a matching
with the most number of edges. Solution:

– Add a new source vertex s with an edge to each vertex in L

92

– Add a new sink vertex t with an edge from each vertex in R

– Give every edge a capacity of 1.

The maximum flow now gives us a maximum matching.

Do an example—see how finding augmenting paths corresponds to finding
zig-zagging paths and swapping which edges have flow and which don’t,
so the number of edges with flow increases by 1 on each iteration.

• Assigning people to teams:

– Each pereson has teams they are willing to be on

– Each team has a max size

– Assign as many people as possible.

Bonus section: max flow algorithms in practice

Ford-Fulkerson is actually a kind of meta-algorithm: it specifies the method
of repeatedly augmenting along s-t paths in the residual network (augmenting
paths) but it doesn’t actually specify how to find augmenting paths. Without
specifying how to find augmenting paths at all, we can prove (on the HW) that
Ford-Fulkerson will run in O(EC) time, where E is the number of edges and C
is the total capacity leaving the source (or the total capacity entering the sink,
whichever is smaller). But if we are more careful about how we find augmenting
paths we can do better.

• The most straightforward way is to simply use a DFS from s to t in the
residual network. This works fine but not particularly well; depending on
the graph it can exhibit the worst case O(EC) behavior.

• We can use BFS in the residual network to find the shortest augmenting
path on each iteration. This is called the Edmonds-Karp algorithm, and
it can be shown (though the proof is outside the scope of this course) that
it runs in O(V E2)—in particular, the running time does not depend on
the capacities. This algorithm works very well in practice, and often runs
much faster than the worst case, behaving more like Θ(E3/2).

• We could use a variant of Dijkstra’s algorithm to find the maximum ca-
pacity augmenting path on each iteration. This seems like it would be a
good idea, but in practice it is usually slower than Edmonds-Karp.

• Finally, there is a clever method, Dinitz’ Algorithm, which instead of find-
ing just a single augmenting path each iteration, sends flow along multiple
augmenting paths at once. (Note: it is often known as Dinic’s Algorithm,
but this is due to a misspelling of the name of its inventor, Yefim Dinitz.)
It works as follows:

1. Do a BFS from s in the residual network and label every vertex with
its level in the BFS tree.

93

2. Now do a DFS from s in the residual network, only taking edges which
go from level i to i+ 1; as we recurse through the graph, keep track
of the available flow and the minimum residual capacity along the
path to each point. Once we reach s we can unroll the recursion and
update flow values with the minimum capacity seen along the path,
and subtract the augmenting flow from the available flow. Instead of
stopping, however, we keep going to try to augment along as many
paths as we can. If we encounter a vertex from which it’s impossible
to reach t, we mark it so we know not to visit it if we ever encounter
it again.

It can be shown that this takes O(V 2E), an improvement over Edmonds-
Karp for dense graphs; Dinitz also works very well in practice and typically
runs much faster than O(V 2E). Also, when using max flow to compute a
maximum matching in a bipartite graph, it can be shown that Dinitz runs
in O(E

√
V) (this special case of Dinitz for maximum bipartite matching

was invented independently and is known as Hopcroft-Karp).

There are many other approaches to finding maximum flows as well (preflow-
push, push-relabel, simplex. . .), which can have even better asymptotic running
times, work better on certain types of graph, or solve more complex max flow
variants (max circulation, min-cost max flow, . . .), but for most practical max
flow problems you will encounter, Edmonds-Karp or Dinitz should work just
fine!

94

36 (P*) Intro to reductions: Independent set
and vertex cover

95

37 (L) Intro to intractability: reductions

This week we will begin studying the limits of computation, from an algorithmic
perspective. What problems can computers solve, and what problems can’t they
solve? Which problems can be solved efficiently and which can’t?

The main tool we will use is the process of reduction. Suppose we have an
algorithm to solve problem B, which we can think of as a black box that takes
some inputs describing a problem instance and yields an appropriate output:

B

We can think of our algorithm as a “subroutine” to turn it into a solution
to another problem:

g(y)y
B

f(x)

A

x

• The function f translates inputs for problem A into inputs for problem
B.

• The function g translates outputs for problem B into outputs for prolem
A.

• Note we can even allow multiple “calls” to B.

Of course, this is only useful if this really does solve problem A. That is,
we need the property that if y is a solution of problem B for input f(x), then
g(y) is a solution of problem A for input x. In this case we write A ≤ B (“A is
reducible to B”). Note we can prove such a reduction without having an actual
algorithm to solve problem B: we just show that if we had an algorithm to solve
B then we could also use it to solve A.

Let’s do an example.

Independent set

Definition 37.1. An independent set in an undirected graph G = (V,E) is a
set of vertices S ⊆ V such that no two nodes in S are joined by an edge.

For example:

6

3

1 2

5

7

4

96

What independent sets can you find? Finding small independent sets is
relatively easy: for example, any set consisting of just a single vertex is an
independent set by definition. Any two vertices that are not connected by an
edge also form an independent set, like {1, 7}. Clearly, the interesting thing is to
try to find large independent sets. In this particular example, we can convince
ourselves that the largest independent set is of size 4, namely, {1, 6, 4, 5}. How
hard is it in general to find the largest independent set? At this point, it’s not
clear! A brute force solution (look at every subset of vertices and check whether
each is independent) will obviously take Ω(2n) if n is the number of vertices.

Instead of simply asking for the largest independent set, we are going to
phrase the problem as a decision problem, which asks for a yes/no answer.
(We’ll explore the reasons for this later.)

Independent-Set: Given a graph G and a natural number k, does G
contain an independent set of size at least k?

Vertex cover

Now let’s consider another problem.

Definition 37.2. A vertex cover in a graph G = (V,E) is a set S ⊆ V such
that every e ∈ E has at least one endpoint in S. (In other words, each e ∈ E is
“covered” by some v ∈ S.)

Look at our example graph from before. It’s easy to find large vertex covers
(for example, the set of all vertices is obviously a valid cover) but hard to find
small ones. For our example graph we can convince ourselves that the smallest
vertex cover has size 3 (namely, {2, 3, 7}).

Vertex-Cover: Given a graph G and a natural integer k, does G
contain a vertex cover of size at most k?

As you may have intuited from our example, there is a close relationship
between Independent-Set and Vertex-Cover.

Theorem 37.3. Let G = (V,E) be an undirected graph. Then S ⊆ V is an
independent set if and only if V − S is a vertex cover.

Proof. (=⇒) Let S be an independent set. We must show V − S is a vertex
cover. So let e = (u, v) ∈ E. We must show at least one of u or v is in V − S.
But since S is an independent set, u and v can’t both be in S; so at least one
of them is not in S, that is, in V − S.

(⇐=) Let V − S be a vertex cover; we must show S is an independent set.
So let u, v ∈ S; we must show there is no edge connecting them. Since u, v ∈ S
then neither one is in V −S. Hence there cannot be an edge (u, v), since V −S

97

is a vertex cover, and so every edge must have at least one of its endpoints in
V − S. SDG

Corollary 37.4. Independent-Set ≤ Vertex-Cover and Vertex-Cover ≤
Independent-Set.

Proof. Suppose we have an algorithm to solve Vertex-Cover. Then to solve
Independent-Set(G, k), just solve Vertex-Cover(G,n− k): G has an inde-
pendent set of size at least k if and only if it has a vertex cover of size at most
n− k. The other direction is similar. SDG

98

38 (P/L) Satisfiability

Suppose we are given a set X = {x1, . . . , xn} of Boolean variables.

Definition 38.1. A term is either a variable xi, or the logical negation of a
variable, which we write xi (the negation of xi is also often written ¬xi).

Definition 38.2. A clause is a disjunction of one or more terms, t1 ∨ · · · ∨ tl.

For example, x1 ∨x3 ∨x4 is a clause. (Note there’s nothing in the definition
precluding repeated variables like x1∨x1∨x1∨x3, but such repetition does not
add anything from a logical point of view, so we usually think of the variables
as being distinct.)

Definition 38.3. A truth assignment is a function X → {T,F} assigning a
value of true or false to each variable xi. A truth assignment satisfies a clause
C if it causes C to evaluate to true (under the usual rules of Boolean logic).

For example, {x1 7→ T, x2 7→ F, x3 7→ F, x4 7→ F} satisfies x1 ∨ x3 ∨ x4, but
{x1 7→ F, x2 7→ F, x3 7→ T, x4 7→ F} does not.

Definition 38.4. A truth assignment v : X → {T,F} satisfies a collection of
clauses C1, . . . , Ck if it satisfies all of them (that is, it satisfies C1∧C2∧· · ·∧Ck).
We say that v is a satisfying assignment for {C1, . . . , Ck}. When a collection of
clauses has some satisfying assignment, we say it is satisfiable.

For example, (x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3) is satisfiable: just set all xi to F.
(This is not the only possible satisfying assignment.)

On the other hand, as you can verify, x1, (x3∨x1), (x3∨x1) is not satisfiable:
there is no way to assign truth values to the xi which will simultaneously satisfy
all the clauses.

Given these definitions, we can state the following problems:

Satisfiability (SAT): Given clauses C1, . . . , Ck over the variables X =
{x1, . . . , xn}, is the collection of clauses satisfiable?

Here is another variant of SAT which seems like it might be easier:

3-SAT: Given a collection of clauses C1, . . . , Ck each containing exactly
three variables, is it satisfiable?

Obviously we have

Theorem 38.5. 3-SAT ≤ SAT.

99

Proof. Since 3-SAT is just a special case of SAT, if we could solve SAT then
we could solve 3-SAT as well; we wouldn’t even have to do any conversion at
all. SDG

Remark. It turns out (but is extremely nonobvious!) that the other direction is
true as well: SAT ≤ 3-SAT (we will prove this eventually). So in some sense
even though the special case of 3-SAT seems like it might be “easier” than the
general case of SAT, it is not.

Why 3, you ask? Because 3 is the smallest k for which k-SAT is just as hard
as SAT. It turns out that 2-SAT, where all clauses have exactly two variables, is
much easier, and can even be solved in linear time. (1-SAT, of course, is trivial
(though not as trivial as 0-SAT).)

Now let’s connect these problems back to some of the problems we have
considered previously.

Theorem 38.6. 3-SAT ≤ Independent-Set.

Proof. We want to exhibit a polynomial-time reduction from 3-SAT to Independent-
Set. That is, given a black box to solve Independent-Set, we want to show
how we could use it to solve 3-SAT, using only a polynomial amount of addi-
tional work.

Given a set of 3-SAT clauses, we want to find a satisfying assignment, which
has to make each clause true. In order to make a clause true it suffices to
choose exactly one term from each clause which will be set to T. (Note that
“setting xi to True” of course means setting xi to F.) However, we have to
choose consistently: we can never pick both xi and xi.

We start by constructing a graph G with 3k vertices arranged in k triangles,
like so:

vk3vk2

vk1

v23v22

v21

v13v12

v11

Each triangle corresponds to a clause, and each vertex corresponds to a term;
in particular, label vij by the jth term from clause Ci. So, for example, given
the clauses

(x1 ∨ x3 ∨ x4), (x2 ∨ x1 ∨ x3), (x1 ∨ x3 ∨ x4),

we would start by constructing the graph

100

x4x3

x1

x3x1

x2

x4x3

x1

This graph always has independent sets of size k (but no bigger): just pick
exactly one node from each triangle. However, we don’t want to allow picking
just any old combination of nodes. So we add more edges: in particular, add
an edge between every pair of nodes labelled by xi and xi for some i. So our
example graph becomes:

x4x3

x1

x3x1

x2

x4x3

x1

An independent set can’t contain both endpoints of an edge. These edges
therefore encode the constraint that we have to choose variables consistently:
we can never choose both xi and xi.

The claim is now that this graph has an independent set of size ≥ k iff
the original 3-SAT instance is satisfiable—and hence we can solve the original
3-SAT instance by asking our black box for Independent-Set whether this
graph has an independent set of size ≥ k. If the graph has an independent set
of size ≥ k, it must in fact have size exactly k and consist of a choice of one
term from each clause. Just making these terms T will result in a satisfying
assignment (variables which do not correspond to any chosen term can be set
to anything, say, F); this is well-defined because we will never have both xi
and xi selected (because of the extra edges we added). Conversely, if there is
a satisfying assignment, just choose one vertex from each triangle whose label
is T under the assignment (since it is a satisfying assignment, each clause must
have at least one term which is T). Any two vertices connected by an edge are
either in the same triangle (and we only pick one vertex from each triangle) or
are labelled with inverse terms (and hence can’t both be labelled T), so this is
an independent set of size k.

SDG

At this point, we have shown

3-SAT ≤ Independent-Set ≤ Vertex-Cover.

101

39 (L) Decision problems and the ≤P relation

Definition 39.1. We say an algorithm takes polynomial time if it runs in O(nc)
for some constant c, where n is the size of the input.

Remark. Note this doesn’t mean the running time has to look like a polynomial!
For example, an algorithm that takes time Θ(n2 log n) is polynomial-time, since
it runs in, e.g., O(n3).

Definition 39.2. If A ≤ B and the translation functions f and g take poly-
nomial time to compute, and the reduction makes only a polynomial number
of subroutine calls to B, then we say that A is polynomial-time reducible to B,
and write

A ≤P B.

Remark. Why focus on polynomial time in particular? Several reasons:

• Polynomials are closed under a lot of natural operations:

– addition (corresponding to running algorithms in sequence),

– multiplication (corresponding to calling one algorithm as a subrou-
tine of another),

– and even substitution (corresponding to algorithm composition, that
is, using the output of one algorithm as the input to another).

This means that if we have two polynomial-time algorithms and combine
them in some way, the result will also take polynomial time.

• Empirically, polynomial time corresponds well to what is feasible in prac-
tice.

Decision problems

Notice how Independent-Set and Vertex-Cover are formulated to give a
yes/no answer, i.e. a single bit of information. Such problems are called decision
problems. Note that when reducing decision problems we don’t have to worry
about translating the output (except perhaps to negate it).

It might seem limiting to restrict ourselves to only decision problems, but
actually it is not as restrictive as you might think. As an example, consider
another variant of Independent-Set:

Independent-Set -Opt: Given an undirected graphG, find the largest
natural number k such that G has an independent set of size k.

Clearly Independent-Set ≤P Independent-Set-Opt: to decide whether
G has an independent set of size at least k, just find the size of the largest
independent set and compare it to k. But actually, Independent-Set-Opt ≤P

102

Independent-Set as well! To find the largest size of an independent set, we
can call Independent-Set as a subroutine for each k from 1 up to n until we
find the biggest for which we get a “yes” answer. Or we could even be a bit
(haha) more sophisticated and do a binary search: Independent-Set returns
a single bit as an answer, and using binary search we can reveal a single bit of
the desired solution k with each subroutine call to Independent-Set. This
results in only a polynomial number (Θ(n) or Θ(log n)) of subroutine calls.

This sort of relationship holds often. So, because they are simpler to deal
with and don’t actually restrict us that much, we will just work in terms of
decision problems.

Lemma 39.3. Suppose A and B are decision problems with A ≤P B. If B is
solvable in polynomial time, then so is A.

Proof. Suppose we have an input x to A of size n. Suppose the translation
function f (which converts x into an input suitable for B) takes time p(n) to
compute, for some polynomial p. Note that this means the size of f ’s output is
also O(p(n)), since it takes p(n) time and it has to produce the entire output in
that time.

Now suppose B can be solved in time q(m), where q is a polynomial and
m is the size of its input. Then the total time to solve problem A on input x,
using the reduction to B, is the time to convert the input plus the time to run
B on an input of size O(p(n)), that is,

p(n) + q(p(n)).

Since p and q are polynomials, and polynomials are closed under addition and
substitution, this is a polynomial. SDG

Remark. It is not too hard to extend this in a couple ways:

• If A and B are not decision problems then we must also take into account
the time needed to run the output conversion.

• We can also take into account the case where B is called a polynomial
number of times as a subroutine—it essentially involves multiplying by
another polynomial, though to do it formally one has to be a bit more
careful to state that we have not just a single input conversion function
but many, which are all bounded by some polynomial runtime.

Corollary 39.4. Suppose A ≤P B. If A is not solvable in polynomial time,
then neither is B.

Intuitively, if A ≤P B then B is “at least as hard as” A (that is, with respect
to solvability in polynomial time).

Lemma 39.5. ≤P is reflexive and transitive.

103

Proof. We can easily reduce a problem to itself using identity conversion func-
tions, which are obviously polynomial-time. Also, if A ≤ B and B ≤ C it is
easy to see that A ≤ C by nesting the reductions. A bit more work is required
to show that the resulting nested reduction will still be polynomial, but it again
boils down to the fact that polynomials are closed under substitution. SDG

104

40 (L) NP

Often, problems which seem hard to solve can nonetheless be easy to verify if
we are handed a (potential) solution. For example, consider the Independent-
Set problem. We don’t yet know how hard it is to solve, but if someone hands
you a set which they claim is an independent set of size ≤ k, it is easy to verify
whether it has the desired size and is, in fact, an independent set—just check
each pair of vertices in the set to see whether they are connected by an edge.
3-SAT is similar: if someone hands you a variable assignment, all you have to
do is plug it in and evaluate the clauses to see whether they are all satisfied.

Let’s be a bit more formal. We will suppose that the input to a problem is
encoded as a binary string s. Formally, the “size” of the input will now be the
number of bits, n = |s|. We will also identify a decision problem X with the set
of all inputs s for which the answer should be “yes”. The problem then boils
down to deciding whether a given bitstring s is contained in X or not. (This is
another reason why studying decision problems is particularly nice.)

Definition 40.1. An algorithm A solves X if for all binary strings s, A(s) = T
iff s ∈ X.

(If we wanted to be even more formal, we should identify an “algorithm”
with some concrete model of computation, typically a Turing machine.)

Definition 40.2. If there is a polynomial p(n) such that A(s) always terminates
in at most p(|s|) steps, we say A is a polynomial-time algorithm and write A ∈ P.

Now let’s formally define what it means to be able to verify the solution to
a decision problem. The idea is that we need some sort of extra information to
verify a positive answer to a decision problem. For example, given some large
graph, if someone were to claim that there was a vertex cover of size ≤ 20, you
would challenge them to prove it to you by showing you the vertex cover. Given
an actual set of vertices, it would be easy for you to check that the set has
size ≤ 20 and also that every edge in the graph is covered. Conversely, if there
is no vertex cover of that size, then no one is going to be able to fool you by
giving you some weird set of vertices. The extra information required to verify
a solution is called a certificate.

Definition 40.3. An algorithm B is a polynomial-time certifier for a decision
problem X if:

• B is a polynomial-time algorithm taking some inputs s and t

• There is a polynomial p such that for all bitstrings s, we have s ∈ X if
and only if there is some bitstring t (called a certificate) with |t| ≤ p(|s|)
and B(s, t) = T.

In other words, s ∈ X if and only if there is a (not too big) certificate
“proving” it, which can be efficiently checked. That is, if the answer to the

105

decision problem s ∈ X is YES, then there is a certificate t that proves it: the
certifier algorithm B, when run on s and t, will return T. Conversely, if s /∈ X,
there is no t that works: B will never return T for a certificate t unless s really
is in X.

For example, again thinking about Vertex-Cover, s is of course a descrip-
tion of a graph and a number k; a certificate t is simply a list of vertices; the
algorithm B checks whether the given set of vertices is ≤ k and whether every
edge is covered by some vertex in the set, which clearly takes time polynomial
in the size of the graph.

Definition 40.4. If X has a polynomial-time certifier, we say X ∈ NP.

For example, 3-SAT, Vertex-Cover, and Independent-Set ∈ NP ac-
cording to our discussion above.

Remark. NP stands for “nondeterministic polynomial time”. The idea is that
if we could make nondeterministic choices (i.e. choose multiple things at once
and try them in parallel), we could solve any NP problem in polynomial time:
just nondeterministically make all possible choices for the certificate t and check
them all at the same time.

We can also observe that

Proposition 40.5. P ⊆ NP.

Proof. Given a decision problem which can be solved in polynomial time, we
can construct a polynomial-time verifier B which simply ignores the certificate
and runs the polynomial-time algorithm to solve the problem. SDG

Question. Does P = NP? This question is literally worth $1 million (it is one
of the seven “Millenium Prize Problems” published by the Clay Mathematics
Institute). It seems too good to be true, and most believe the answer is no. But
this seems extremely difficult to prove.

Definition 40.6. A decision problem X is NP-hard if for all Y ∈ NP, Y ≤P

X.

Intuitively, a problem is NP-hard if it is “at least as hard as everything in
NP”. It seems reasonable that there might be some extremely hard problems
which fit the bill—though how on earth would we go about proving it? To show
that X is NP-hard, we have to somehow show that every NP problem can be
reduced to X, which at first glance seems impossible.

Lemma 40.7. If X is NP-hard and X ≤P Y then Y is NP-hard.

Proof. Transitivity of ≤P . SDG

So if we can find just one NP-hard problem, we can potentially use this
lemma to find others.

Definition 40.8. A decision problem X is NP-complete if both X ∈ NP and
X is NP-hard.

106

It is not at all clear that any such problems exist at all! We could just as
easily imagine a situation where there are just a bunch of problems in NP which
are “maximally hard”—that is, no other problems in NP are harder—but are
still not harder than everything in NP. Or we could imagine that the only
problems harder than everything in NP are themselves so hard that they are
not in NP.

Proposition 40.9. If a decision problem X is NP-complete, then X is solvable
in polynomial time if and only if P = NP.

Proof. (=⇒) If X is solvable in polynomial time, then by a previous lemma, any
Y with Y ≤P X is also solvable in polynomial time. But if X is NP-complete
then by definition every problem in NP is reducible to X and hence solvable in
polynomial time.

(⇐=) If X is NP-complete then by definition X ∈ NP, so if P = NP then
X ∈ P. SDG

Corollary 40.10. If you come up with a polynomial-time algorithm to solve an
NP-complete problem, you win $1 million.

Good luck. Note that this is not just theoretical; it turns out that there
are a great many NP-complete problems that people actually care about on a
practical level. So lots of smart people have been trying hard for a long time to
develop good algorithms to solve them, but no one has ever come up with any
polynomial-time algorithms for any of them.

107

41 (L) The first NP-complete problem

Definition 41.1. A boolean circuit is a directed, acyclic graph G such that:

• Each indegree-0 vertex (“input”) is labelled with either F, T, or a distinct
variable.

• All other vertices have indegree 1 or 2, and are labelled with either ¬ (if
indegree 1) or ∨ or ∧ (if indegree 2)

• Only one vertex has outdegree 0, which we call the “output”.

(Note this is not really a “circuit” as we would usually conceive it, since in
particular there are no loops!)

Given a truth assignment for the variables labelling the inputs, we think of
the circuit as resulting in a T/F value in the obvious way: each edge corresponds
to a wire which carries a single T/F value to the input of the next logic gate.
Boolean circuits come with a natural decision problem:

Circuit-SAT: Given a boolean circuit, is there an assignment of the
input variables such that the circuit outputs T?

Theorem 41.2 (Cook, Levin (1971)). Circuit-SAT is NP-complete.

Proof. First, it is easy to see that Circuit-SAT ∈ NP: a certificate is a truth
assignment; to verify it we can just run the circuit and check that it outputs T.

Now we must show Circuit-SAT is NP-hard. Suppose X ∈ NP, i.e. X
has a polynomial-time certifier B. We must show X ≤P Circuit-SAT.

Since B is an algorithm, it can be encoded as a boolean circuit (proof:
computers exist, and any boolean function can be encoded using ∧, ∨, ¬).
Well, except for one problem: our boolean circuits have no loops. But we can
circumvent that by simply “unrolling” any loops, by making a whole bunch
of copies of a circuit that computes a single step. If the algorithm only runs
for a polynomial amount of time then we need at most a polynomial number
of copies to make this work. So, intuitively, we can build a polynomial-sized
boolean circuit that simulates the algorithm B. Given an input s, we fix the
inputs corresponding to s, and leave as variables the inputs corresponding to t.
Now we ask whether the resulting circuit is satisfiable. If it is, that means there
is some t such that B(s, t) = T, that is, s ∈ X. If it is not satisfiable, then there
is no such t, so s /∈ X. Hence X ≤P Circuit-SAT. SDG

Now that we know there is one NP-hard problem, finding others is a lot
simpler!

Theorem 41.3. 3-SAT is NP-complete.

108

Proof. We already know 3-SAT ∈ NP. We will show it is also NP-hard “by
reduction from Circuit-SAT”, that is, we will show Circuit-SAT ≤P 3-SAT.
Since we know Circuit-SAT is NPoly-hard, by transitivity this will mean that
3-SAT is also NP-hard.

We are given a circuit as input, and have to decide whether it is satisfiable.
We will construct a corresponding 3-SAT instance which is satisfiable iff the
original circuit is.

First, associate a distinct variable with each edge in the circuit. Now we will
define one or more clauses for each node, where each clause has at most three
terms. To make things a bit more intuitive we will use a ⇒ b as shorthand for
a ∨ b.

• Given a ¬ node with input xu and output xv, generate the two clauses
(xu ⇒ xv) and (xu ⇒ xv).

• Given a ∨ node with inputs xu, xv and output xw, generate the three
clauses (xu ⇒ xw), (xv ⇒ xw), and ((xu∧xv)⇒ xw) (this last expression
simplifies to xu ∨ xv ∨ xw, so it is a valid clause; remember clauses can
contain only ∨, not ∧).

• Given a ∧ node with inputs xu, xv and output xw, generate the three
clauses (xu ⇒ xw), (xv ⇒ xw), and ((xu ∧ xv)⇒ xw) (which simplifies to
xu ∨ xv ∨ xw).

• For a constant input node connected to the edge xu, just generate the
clause xu (if the constant is T) or xu (if the constant is F).

• Finally, generate a clause containing just the variable connected to the
output node (since we want the output to be true).

At this point it is clear that the resulting set of clauses will be satisfiable if
and only if the original circuit is satisfiable, because the clauses encode exactly
what will be computed throughout the entire circuit.

The only remaining detail is that we have to make sure each clause has
exactly three terms. To do this, first introduce four new variables, call them
z1 . . . z4. The idea is that we will force z1 and z2 to be F (z3 and z4 exist just
to help us do this), so they can be used to “pad out” any clauses which are too
short, without affecting their meaning.

Create eight new clauses of the form (zi ∨ ±z3 ∨ ±z4), where we replace zi
by either z1 or z2, and replace ±z3 by either z3 or z3, and so on, and we do this
in all possible ways, thus resulting in eight clauses. Notice that these clauses
force z1 = z2 = F: no matter what values are assigned to z3 and z4, there will
be one clause of the form (z1 ∨ . . .) where the . . . terms are false, and hence for
the clause to be satisfiable we must have z1 = F (and similarly for z2). Now,
for each clause with fewer than three terms, just add · · · ∨ z1 or · · · ∨ z1 ∨ z2 as
appropriate to bring it up to three terms. Since z1 and z2 must be F, this has
no effect: the new, padded clause will be satisfied iff the original clause is.

109

Hence we have succeeded in constructing a 3-SAT instance which is satisfi-
able iff the original boolean circuit is satisfiable. The constructed 3-SAT instance
has as many variables as there are edges in the circuit, and no more than 3n+ 8
clauses, where n is the number of vertices in the circuit, so constructing the
3-SAT instance takes time polynomial in the size of the circuit. SDG

Corollary 41.4. 3-SAT, SAT, Independent-Set, and Vertex-Cover are
all NP-complete.

Proof. We have already discussed the fact that they are NP. Since we now
know Circuit-SAT ≤P 3-SAT ≤P Independent-Set ≤P Vertex-Cover
and 3-SAT ≤P SAT, by transitivity of ≤P they are all NP-hard. SDG

This is amazing. Just by looking at the definitions it wasn’t at all clear
whether we would be able to find a single problem which was NP-complete,
and now we have found five. (And you will find yet more on your HW.) In fact,
it turns out that we currently know of hundreds of “natural” problems which
are NP-complete.

So, the “reason” Circuit-SAT is NP-hard is that we can use it to model
arbitrary computation, by essentially building a little computer. But think
about what this transitive chain of reductions is then showing us: we can take
a circuit modelling a computer and reduce it to a 3-SAT instance which models
the same computer. But we can then in turn take that 3-SAT instance modelling
a computer and reduce it to a graph, such that finding an independent set of a
certain size in the graph models the same computation! Computation is sneaky
like that; you end up finding it in places you would not expect. Who would have
guessed that finding independent sets in a graph turns out to be equivalent to
doing arbitrary computation? But in some sense NP-complete problems are
like this, and this gives us some intuition as to why they are so hard to analyze:
because you can smuggle arbitrary computation into them!

110

42 (L) Travelling salesman is NP-complete

1. 3-SAT ≤ HAMILTONIAN CIRCUIT ≤ TRAVELLING SALESMAN.

See K&T for reductions.

111

43 (L) Super Mario Bros (and Kirby’s Dream
World) are NP-hard

Show paper by Aloupis et al.

112

44 (L*) Rabin-Karp pattern matching

Given a pattern P = p1 . . . pm and a text T = t1 . . . tn where pi, ti ∈ {0, 1},
a natural question to ask is, does P occur as a substring within T (and if so,
where)? Note that typically n is much larger than m; think of T as a large
body of text and P as a word or phrase we are looking for. (If we wanted to
do this with actual text instead of bitstrings, we could simply encode the text
as bitstrings, or all of the following can be easily generalized to alphabets other
than {0, 1}.)

Let Ti,m = titi+1 . . . ti+m−1 be the substring of T starting at index i with
length m (the same length as the pattern P). The question then becomes: does
the exists some 1 ≤ i ≤ n−m+ 1 such that Ti,m = P? Note that P must occur
contiguously (we are looking for a substring, not a subsequence).

The näıve algorithm would be to just try comparing P to each position in
T , but this is O(nm) in the worst case (imagine matching P = 00001 against
T = 0000 . . . 0000). There are algorithms for solving this problem in O(n+m)
such as Knuth-Morris-Pratt or Boyer-Moore. These algorithms are deterministic
but somewhat complicated. Today we will look at the Rabin-Karp algorithm,
which involves randomness and has O(n + m) expected time. Even if m is
relatively small, this can make a big difference in practice (imagine if Google
took 14 times longer to search for an input phrase with 14 letters than it did to
search for a single letter).

The idea is to use a hash function h. The basic outline of the algorithm is
as follows:

Algorithm 15 Näıve Rabin-Karp

1: for i← 1 . . . n−m+ 1 do
2: if h(Ti,m) = h(P) then
3: if Ti,m = P then return i

return Not found

We iterate through all possible positions, and check whether the hashes of
Ti,m and P are equal. If the hashes are not equal then Ti,m and P definitely do
not match. But if the hashes are equal, we still have to check, since different
strings can hash to the same value.

Our hope is that by checking hashes we can avoid actually comparing strings.
However, at this point we haven’t actually saved any work yet. The outer loop
(line 1) of course executes O(n) times, and computing the hash of a length-m
bitstring definitely takes at least Ω(m) time because it at least has to read the
whole string! So the whole algorithm is still O(mn). However, we have made
some conceptual (if not actual) progress!

The first insight is that if we pick h cleverly, we can avoid doing so much
work to compute it: perhaps we can compute h(Ti+1,m) from h(Ti,m) in O(1)
time. That would bring down the time needed for the check on line 2. The only

113

remaining problem is that we might have too many hash collisions. The check
on line 3 is still O(m); if we have to do the expensive equality check too many
times, the algorithm could still be O(mn) overall. We’ll address this problem
later.

To be able to compute h incrementally in this way, we introduce the concept
of a rolling hash function.

Definition 44.1. Let I(b1 . . . bm) = 2m−1b1 + 2m−2b2 + · · ·+ 20bm, that is, the
integer value of b1 . . . bm considered as a binary number.

Definition 44.2. Let p be a prime number chosen from some range [1 . . . 2k]
(we will pick k later). Then define hp(X) = I(X) mod p.

Note that hp(X) takes O(m) time to compute (where m is the number of
bits in X).

Notice that

I(Ti+1,m) = I(ti+1ti+2 . . . ti+m)

= 2m−1ti+1 + 2m−2ti+2 + · · ·+ 21ti+m−1 + 20ti+m

= 2mti + 2m−1ti+1 + · · ·+ 21ti+m−1 − 2mti + 20ti+m

= 2(2m−1ti + 2m−2ti+1 + · · ·+ 20ti+m−1)− 2mti + ti+m

= 2I(titi+1 . . . ti+m−1)− 2mti + ti+m.

and hence hp(Ti+1,m) = (2hp(Ti,m) − 2mti + ti+m) mod p, which can be com-
puted in O(1). So now the initial evaluation of hp(T1,m) takes O(m), and
computing subsequent values of hp takes only O(1).

Now, what about collisions? Note that

hp(P) = hp(Ti,m)

⇐⇒ I(P) ≡ I(Ti,m) (mod p)

⇐⇒ I(P)− I(Ti,m) ≡ 0 (mod p)

⇐⇒ p divides |I(P)− I(Ti,m)|.

Since both P and Ti,m have m bits, their difference is at most |I(P)−I(Ti,m)| ≤
2m. So we can quantify the probability of a hash collision by answering two
questions:

1. How many prime divisors can a number ≤ 2m have?

2. How many primes are there in the range [1, 2k]?

Answering the first question is easy:

Lemma 44.3. Any number N ≤ 2m has at most m distinct prime divisors.

Proof. All primes are ≥ 2. So if there were more than m distinct prime divisors,
their product would be > 2m. SDG

114

The second question is not so easy to answer, but thankfully it has already
been answered for us:

Theorem 44.4 (Prime number theorem). Let n ∈ Z+, and let π(n) denote the
number of primes ≤ n.

π(n) = Θ
(n

lnn

)
.

We can now quantify the probability of a hash collision, which is just the
probability that the chosen prime p matches one of the prime divisors of I(P)−
I(Ti,m). This probability, in turn, is just the number of distinct prime divisors
of I(P)− I(Ti,m) divided by the total number of primes in [1, 2k].

Pr[hp(P) = hp(Ti,m,)] =
of distinct prime divisors of I(P)− I(Ti,m)

of primes ∈ [1, 2k]

≤ m

π(2k)

= O

(
m

2k/ ln 2k

)
= O

(
mk

2k

)
If we choose 2k = nm log(nm), then k = log 2k = log(nm) + log log(nm) ≤

2 log(nm) = O(log(nm)), in which case

O

(
mk

2k

)
= O

(
m log(nm)

nm log(nm)

)
= O(1/n).

Therefore the probability of getting a collision at each index i is only 1/n, which
means we expect about 1 collision over the course of the entire algorithm—this
is great! The whole algorithm thus runs in O(m + n) (O(m) to compute the
initial hash + O(n) loops with O(1) work in each to compute the next hash +
O(m) to do the expected 1 equality check).

And finally, how big is p? Actually it’s not bad at all: p has k = O(log(nm)) =
O(log n) bits. For example, a 64-bit prime is enough to efficiently search in a
text of 264 bits ≈ 2 exabytes.

115

45 (L*) Bucket sort

Suppose we are given a list of 10 million records, each representing a person,
and we want to sort them by their birthday (i.e. all the people born on January
1st come first—regardless of their birth year—then all those born on January
2nd, and so on). What is the best algorithm for doing this?

We could of course use a standard sorting algorithm like merge sort, which
would take Θ(n log n) time. But in this case we can actually do something
better! Make an array with 366 “buckets”, one for each day of the year. Now
scan through the records and put each record in the bucket corresponding to its
birthday. After putting all the records in buckets, simply list all the items in
the first bucket, followed by all the items in the second, and so on. Assuming
that we can add and remove from the buckets in constant time, and that we can
access any given bucket in constant time, this algorithm takes only Θ(n) time.

So what gives? Haven’t we proved that we can’t sort any faster than
Θ(n log n)? Well, yes, but that is for comparison-based sorting, i.e. sorting
under the assumption that the only thing we can do with two keys is to com-
pare them. In this case we can do better, since we know in advance how many
keys there are and can easily convert them into consecutive integers.

In general, if we have a list of items L with |L| = n, and k different keys
0 . . . k − 1, we can use the following algorithm:

Algorithm 16 Bucket Sort(S)

1: Initialize an array Q of k queues
2: for x ∈ L do
3: Add x to Q[x.key]

4: for i ∈ 0 . . . k − 1 do
5: Append the contents of Q[i] to the output list

We assume we are using a queue implementation that supports Θ(1) enqueue
and dequeue. This algorithm takes Θ(k) to create the buckets in the first place,
then Θ(n) to scan through and place everything in buckets, and another Θ(n)
to list the buckets in order, for a total of Θ(n+ k). This works well when

• we know k in advance

• k is relatively small

Of course if k < n this is Θ(n).
Using queues for buckets ensures that the algorithm is stable: we say a

sorting algorithm is stable if items having equal keys retain their relative order
from the input. All the items with a given key i are added to Q[i] in the order
they are encountered in the input list L, and then removed from Q[i] in the
same order. This stability may or may not be a big deal when using bucket
sort by itself—we might not care about the relative ordering of all the people

116

born on February 12—but it will turn out to be crucial in using bucket sort as
a building block for more complex algorithms.

117

46 (L*) Radix sort

Suppose more generally that our keys are strings in Σ∗ for some alphabet Σ,
that is, keys are sequences of elements from Σ. For example, if Σ = {0, . . . , 9}
then keys would be numbers like 123 or 97268. If the keys have length up to d
then there are |Σ|d| possible keys, which is probably too many to do bucket sort.
For example, suppose we have ten million records which we want to sort by last
name, where each name is a string of letters. Even if we assume that names are
at most ten letters long (probably a bad assumption!), that is still 2610 ≈ 141
trillion possible names, so bucket sort—which would require creating an array
with 141 trillion elements—is completely out of the question.

However, in this situation we can still often do better than a comparison-
based sort, using an algorithm called radix sort. Radix sort was actually used
as long ago as 1887 (yes, 1887, not 1987); look up Herman Hollerith if you want
to know more!

The basic idea is to do an independent bucket sort on each key position. As
an example, suppose Σ = {0, . . . , 9}, and let’s begin with the list

126, 328A, 636, 128, 341, 121, 416, 131, 016, 328B .

The two copies of 328 are marked with A and B so we can see what happens to
them.

• First, we bucket sort on the least significant, i.e. last, digits. We would
put 126 into the 6 bucket, then 328A into the 8 bucket, and so on, resulting
in the buckets

0 1 2 3 4 5 6 7 8 9
341 126 328A
121 636 128
131 416 328B

016

So, after listing out all the buckets in order, we get

341, 121, 131, 126, 636, 416, 016, 328A, 128, 328B .

• Next, we bucket sort on the second digit:

0 1 2 3 4 5 6 7 8 9
416 121 131 341
016 126 636

328A
128

328B

resulting in

416, 016, 121, 126, 328A, 128, 328B , 131, 636, 341.

118

The bucket sort puts the elements in order by their second digit, but notice
that something else has happened: because they were already sorted by
their last digit, and bucket sort is stable, elements with the same second
digit end up in the correct order with respect to their last digits. So at
this point, the list is actually sorted by the last two digits of each element
(16, 16, 21, 26, 28, . . .).

• One final bucket sort by the first digit now leaves the entire list correctly
sorted:

0 1 2 3 4 5 6 7 8 9
016 121 328A 416 636

126 328B
128 341
131

resulting in

016, 121, 126, 128, 131, 328A, 328B , 341, 416, 636.

Again, since the elements were already correctly sorted by their last two
digits, doing a stable sort on their first digits leaves them in the correct
order. Notice also that radix sort itself is stable: for example, 328A and
328B ended up in the same relative order they started in.

Theorem 46.1. Radix sort is a correct sorting algorithm.

Proof. We claim that after the ith bucket sort pass, the keys are sorted by their
length-i suffixes, which we prove by induction on i.

• In the base case, when i = 0, the statement is vacuously true: nothing is
sorted.

• In the inductive case, suppose the claim holds after the first i bucket sort
passes; we will show it continues to hold after the (i+ 1)st. Consider keys
X and Y .

– If Xi+1 6= Yi+1 then the i + 1st bucket sort pass will put them in
the correct order: they will go in different buckets, and their correct
order with respect to their length-(i + 1) suffixes is determined by
Xi+1 and Yi+1.

– If Xi+1 = Yi+1 then by the induction hypothesis they were already in
the correct order by their length-i suffixes and hence by their length-
(i + 1) suffixes as well. The next bucket sort pass will not change
their relative order since bucket sort is stable.

SDG

119

If we assume all the keys have length at most d, and assume that the size of
the alphabet is a constant with respect to the size of the input, radix sort takes
O(dn): we do one Θ(n) bucket sort for each of the d key positions. Notice that
if most of the keys have length d then dn is the actual size of the input, so this
is really just linear in the size of the input. (There are complications when the
keys have very different lengths, a few keys are much longer than all the others,
etc.)

This algorithm is called LSD radix sort (LSD stands for Least Significant
Digit), since we sort starting with the least significant key position. It works
well for sorting numbers, especially when the numbers can be different lengths:
we imagine left-padding numbers with zeros, but with LSD radix sort we don’t
actually need to do any padding, and we don’t need to worry in advance about
how long the different numbers are.

Alternatively, we can imagine running bucket sorts in order from most to
least significant digit (MSD radix sort), using each bucket sort to partition the
keys and doing a recursive sort on each bucket. This works well for sorting
strings alphabetically.

Algorithm 17 MSD-Radix(A,i)

1: if |A| = 1 then return A
2: else
3: Sort A into buckets based on the ith character
4: Recursively call MSD-Radix(B, i+ 1) on each bucket B
5: Concatenate and return the results.

One way to look at this is that it recursively builds an intermediate trie, and
then returns an inorder traversal of the trie. The pro of this approach is that it
deals efficiently with different length keys. The con is that it uses quite a bit of
space and function call overhead.

120

47 (L*) More radix sort

Radix sorting integers in practice

Consider radix sorting 64-bit integers in practice. Our example from last time
involved using the alphabet Σ = {0, . . . , 9}, but converting all the integers to
base 10 just to sort them is ridiculous.

Of course the integers are actually stored in base 2, but if we literally used
radix sort with k = 2, we would do 64 bucket sort passes with only two buck-
ets each time, taking time O(64n). Notice that this is actually slower than
O(n log n) unless n > 264 ≈ 18 quintillion! We probably will never be sorting a
list containing quintillions of integers so this is no good. Sometimes constants
really do matter!

One nice solution is to use a bigger value of k. In particular, we can think
of the numbers as being stored in base 216 (each 64-bit integer consists of four
base-216 “digits”). We make 216 = 65536 buckets and do four bucket sort passes;
on each pass we place the numbers in appropriate buckets by looking at 16 bits
at a time. (Note that pulling out a given 16 bits of an integer and using it to
index into an array is very fast, using hardware-supported bitwise operations.)
Overall this takes O(216 + 4n).

Radix sorting strings in practice

We saw last time that a simple implementation of radix sort takes O(nd) where
n is the number of items to sort, and d is the maximum length of the keys
(which we assume to be strings over some alphabet Σ). When all the keys have
the same length, nd is exactly the size of the input, so this is optimal (assuming
it takes Θ(d) to look at an entire key).

But what if the keys have different lengths? A good example is when we
want to sort a collection of strings, which in general probably won’t have the
same length. One approach is to simply imagine right-padding each string with
“null” characters (which sort before any other character). This will give the right
behavior; the problem is that it may be too slow. In particular, think of what
happens during the algorithm, when we are doing a bucket sort pass on an index
that is greater than the length of all but a few strings. We will go through the
entire list, placing almost all of the strings into the single “null” bucket, putting
only a few long strings into other buckets, and then concatenating them all
again. This is mostly wasted work.

In the worst case, suppose we have n strings which are almost all some
constant length d << n, except for one string which has length Θ(n). In this
case a naive implementation of radix sort would take Θ(n2), even though the
total size of all the strings is only Θ(n)—even worse than a comparison-based
sort! Can we do better?

One idea is of course to use a recursive MSD radix sort. But with some
cleverness we can do even better, avoiding a lot of the overhead associated with
that approach.

121

The idea is to sort the strings by length, and then deal with them in order
from longest to shortest. On each bucket sort pass we can then restrict our at-
tention to only the strings which are long enough; we know all the shorter strings
would be put in the “null” bucket so there is no point in doing so explicitly.

But how can we sort the strings by length? With another bucket sort, of
course!

Algorithm 18 StringSort1(L)

1: d← maximum length of any string in L
2: ofLen ← Bucket sort L by length, returning d buckets
3: T ← empty list
4: Create k buckets, one for each character
5: for i← d− 1 down to 0 do
6: T ← ofLen[i] + T
7: Bucket sort T by char at index i

return T

The loop maintains the invariant that at the start of the loop, the strings
in T are sorted by their suffixes from index i + 1 on. Prepending ofLen[i], the
strings of length exactly i, maintains this property since we imagine strings of
length exactly i have nulls at index i + 1, so they come first. Then we know
that if the strings are sorted by their suffixes starting at index i + 1, doing a
bucket sort on index i will leave them sorted on their suffixes starting at index
i, so the invariant will be preserved for the next loop. When the loop is done,
the strings are sorted starting at index 0, i.e. they are sorted.

How long does this take? Let n = |L| be the number of strings in L, N the
total number of characters in L (i.e. the sums of all the lengths), d the length
of the longest string, and k = |Σ| the size of the alphabet (e.g. k = 256 if we
think of characters as bytes; properly sorting Unicode strings is a morass best
avoided if at all possible3). Line 1 takes Θ(N). Bucket sorting by length on
line 2 takes Θ(N + d). Creating the buckets on line 4 takes Θ(k); we do this
to explicitly highlight the fact that we don’t have to recreate the bucketes each
time through the loop. Line 6 will take a total of Θ(n) over the course of the
whole algorithm (given a suitable choice of data structure for T which supports
constant-time prepending), since we prepend each string exactly once.

And what about the bucket sort on line 7? It’s helpful to think about
breaking this down into two phases: first, distributing the strings in T according
to index i; then, concatenating all the buckets back into T . Distributing will
take a total of Θ(N) over the course of the entire algorithm, since we will look
at each character exactly once. Concatenating takes a total of Θ(kd + N):
each time through the loop we have to look at every single bucket (even the
ones that don’t contain any strings), since we have no a priori way of knowing
which buckets will contain strings and which won’t; additionally, to concatenate
elements back to T we have to Θ(N) work.

3http://unicode.org/reports/tr10/

122

All in all, then, this is Θ(N + (N + d) + k+ n+N + kd+N) = Θ(N + kd).
But that kd is annoying! It comes from the fact that we have to look through
all the buckets on every pass, even when only a few of them contain anything
(which will probably be the case while i is large, and there are only a few long
strings in T). If only we knew ahead of time which buckets will have any strings
in them, we could just concatenate elements from those, and avoid having to
look at any others.

. . . well, we have one more trick up our sleeves. We can, in fact, figure out
ahead of time what characters will show up in each position. First, for each
character c in any string in the input, create a pair (i, c), where i is the index
of c in its string. So we have exactly N pairs. Now, do two bucket sorts: first,
bucket sort all the pairs by the character c; next, bucket sort them by the index
i. We will end up with one bucket for each index from 0 to d − 1, where each
bucket contains a sorted list of the characters that occur at index i in any string.

For example, suppose we have the list

L = {cat, catastrophe, cut, cot, car, bar}

Now, when doing the bucket sort of our strings on index i, we know exactly
which characters will occur at that index, so we know which buckets will be
nonempty.

Algorithm 19 StringSort(L)

1: d← maximum length of any string in L
2: P ← empty list
3: for s ∈ L do
4: for i ∈ 0 . . . |s| − 1 do
5: Append the pair (i, s[i]) to P

6: Bucket sort P by character (second component)
7: charsAt ← Bucket P by index (first component), returning d buckets, each

containing the sorted list of characters occurring at index i
8: ofLen ← Bucket L by length, returning d buckets
9: T ← empty list

10: Create k buckets, one for each character
11: for i← d− 1 down to 0 do
12: T ← ofLen[i] + T
13: Distribute strings in T into buckets by char at index i
14: for c ∈ charsAt [i] do
15: Pop one string from bucket c and append it to T

return T

Creating P takes Θ(N). The first bucket sort of P takes Θ(N + k), and the
second takes Θ(N + d). Finally, because in the main loop we now only look at
buckets which actually contain any characters, the sum of all the bucket sort
passes now takes only Θ(N), because we simply do a constant amount of work
for each character in each string. Thus, the whole algorithm is Θ(N + k + d).

123

Of course, this probably only makes sense when k and d are both much smaller
than N , in which case it is just Θ(N).

124

