
Algorithms: Introduction to Dynamic Programming

Learning objective: Students will
apply memoization techniques to speed
up overlapping recursion.

Model 1: Fibonaccis

Here are three functions to compute Fibonacci numbers, implemented in Python. You may as-
sume that they are all correct.

def fib1(n):

if n <= 1:

return n

else:

return fib1(n-1) + fib1(n-2)

def fib2(n):

fibs = [0] * (n+1) # Create initial array of all 0s

fibs[1] = 1

for i in range(2, n+1):

fibs[i] = fibs[i-1] + fibs[i-2]

return fibs[n]

fibtable = [0,1]

def fib3(n):

while len(fibtable) < n+1:

fibtable.append(-1)

if fibtable[n] == -1:

fibtable[n] = fib3(n-1) + fib3(n-2)

return fibtable[n]



algorithms: introduction to dynamic programming 2

1 Which of the three implementations corresponds most directly to
the recurrence defining Fibonacci numbers?

2 Draw the call tree for fib1(5).

3 It turns out that fib1 is extremely slow; it takes exponential time.
Explain why it is slow. (You do not have to prove that it takes
exponential time.)

4 Trace the execution of fib2(5) and explain how it works.

5 Which does more work, fib2(5) or fib1(5)? Why?

6 In terms of Θ, how long does fib2(n) take?1 1 For the purposes of this activity, you
should assume that each addition takes
constant time. However, as you know
from a previous activity, it is more
accurate to say that addition takes
linear time in the number of bits, which
actually makes a difference here since
Fibonacci numbers can get quite large.
You will analyze the situation more
precisely on the HW.

7 Suppose we switch the direction of the for loop in fib2, so i loops
from n down to 2. Would it still work? Why or why not?

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: introduction to dynamic programming 3

8 Trace the execution of fib3(5) and explain how it works.

9 In terms of Θ, how long does fib3(n) take?

10 Fill in this statement: fib3 is just like fib1 except that

.

11 Fill in this statement: fib2 is just like fib3 except that

.

12 Why don’t we do something akin to fib2 or fib3 for merge sort?

13 Consider the following recursive definition of Q(n) for n ≥ 0:

Q(0) = 0

Q(1) = Q(2) = 1

Q(n) = max

Q(n − 3)2

Q(n − 1) + Q(n − 2)

(Note that there are three base cases.) Using pseudocode, write an
algorithm to calculate Q(n) efficiently.

© 2019 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Model 1: Fibonaccis

