
Dynamic programming example: subset sum
CSCI 382, Algorithms

October 28, 2019

As in the activity from class, given a set X = {x1, x2, . . . , xn} and a
target value S, we wish to determine whether there is a subset of X
with sum exactly equal to S.

Step 1: A Recurrence

Consider different ways of splitting up or restricting the overall
problem into subproblems or subcases, and come up with a recur-
rence.

The key to solving this problem is to generalize it along two di-
mensions: we consider both summing to any s ≤ S, and we also
consider trying to use only the xi up to xk, that is, {x1, . . . , xk}, in-
stead of the full set X. That is, canAddTo(k, s) will be True if there is a
subset of {x1, . . . , xk} which adds to exactly s. We have the following
recurrence:

canAddTo(k, 0) = True

canAddTo(0, s) = False (when s > 0)

canAddTo(k, s) =

canAddTo(k− 1, s) if xk > s

canAddTo(k− 1, s) ∨ canAddTo(k− 1, s− xk) otherwise

That is,

• We can always add to the sum 0 by picking the empty subset.

• We can never add up to a nonzero sum if we aren’t allowed to use
any of the xi.

• If xk > s, then it can’t be used in a subset that sums to s, so
whether we can make the sum s using a subset of x1 . . . xk has
the same answer as whether we can make s using a subset of
x1 . . . xk−1.

• Otherwise, we can try both omitting xk (in which case we have to
make s using elements up to xk−1, as before), or using it (in which
case we have to make the remaining s− xk using the elements up
to xk−1.

dynamic programming example: subset sum 2

Step 2: Induction

An inductive proof of correctness follows the outlines of the above
argument. Our induction hypothesis is to assume that canAddTo will
give the correct answer for any k′ < k and/or s′ < s, and then argue
why we do the right things with the results of the recursive calls
made.

Step 3: Memoize

If there are overlapping subproblems, memoize.
This most definitely has overlapping subproblems. One simple ap-

proach, as discussed on the in-class activity, is to use a 2D array c of
size (n + 1)× (S + 1), so c[k][s] will store the output of canAddTo(k, s).
Each entry depends only on entries either above it, or above it and to
the left, so we can fill it in row order or column order. In pseudocode:

1: for k from 0 to n do
2: for s from 0 to S do
3: if s = 0 then
4: c[k][s] = True
5: else if k = 0 then
6: c[k][s] = False
7: else if xk > s then
8: c[k][s] = c[k− 1][s]
9: else

10: c[k][s] = c[k− 1][s] || c[k− 1][s− xk]

Figure 1: SubsetSum

Alternatively, we could use the technique of having a recursive
function which checks first to see whether the required output is
already in the array.

Step 4: Remember Your Choices!

To compute the actual optimal solution instead of just the optimal
value, save the choices made at each step.

What information does canAddTo discard? It is precisely the choice
of whether to use xk or not. The Boolean “or” operation will be True
if either one of its inputs is; it does not care which. Therefore we will
make another (n + 1) × (S + 1) array of booleans called use, where
use[k][s] is True if and only if we should use xk in a subset to make s
(Figure 2). Assume use gets initialized with all False values.

dynamic programming example: subset sum 3

1: for k from 0 to n do
2: for s from 0 to S do
3: if s = 0 then
4: c[k][s] = True
5: else if k = 0 then
6: c[k][s] = False
7: else if xk > s then
8: c[k][s] = c[k− 1][s]
9: else

10: without← c[k− 1][s]
11: with← c[k− 1][s− xk]

12: if with then
13: use[k][s] = True

14: c[k][s] = with || without

Figure 2: SubsetSum

If c[n][S] is True, then there is some subset of X which adds to S.
To reconstruct such an actual subset we can work our way backwards
as follows:

1: k← n
2: s← S
3: Initialize T to the empty set
4: while k > 0 and s > 0 do
5: if use[k][s] then
6: Add xk to T
7: s← s− xk

8: k← k− 1

	Step 1: A Recurrence
	Step 2: Induction
	Step 3: Memoize
	Step 4: Remember Your Choices!

