
Flow network application example: committee as-
signment problem
CSCI 382, Algorithms

November 1, 2019

The input to the committee assignment problem, consists of the
following data:

• A set of people P = {p1, p2, . . . , pm}.

• A set of committees C = {c1, c2, . . . , cn}.

• Each person pi has a set of committees Wi they are willing to be
on.

• Each person pi has a max number of committees, mi they are will-
ing to be on in total.

• Each committee ci has a required number of people zi.

The problem is to come up with an assignment of people to commit-
tees that satisfies all the constraints (i.e. each committee has exactly
zi different people assigned to it, and each person pi is assigned only
to committees they are willing to be on, and to no more than mi com-
mittees in total), or report that this is not possible.

Solution via flow network

The solution is to turn the problem into an appropriate flow network;
finding a max flow will then correspond to solving the problem. In
particular, we build a flow network G = (V, E) as follows:

• V = P ∪ C ∪ {s, t}, that is, there is one vertex for each person, one
for each committee, and two extra vertices to serve as the source
and sink. When writing up a solution involving a

flow network, you are also encouraged
to draw it instead of tediously specify-
ing all the vertices and edges formally; I
was just too lazy to draw a nice picture
for this writeup.

• Connect the source s to each pi with a directed edge of capacity
mi.

• Connect each ci to the sink t with a directed edge of capacity zi.

• Make a directed edge (pi, cj) with capacity 1 for each cj ∈ Wi; that
is, connect each person to those committees they are willing to be
on.

To solve the committee assignment problem, we can now find a
max flow on G (using e.g. the Ford-Fulkerson algorithm, or any of
a number of variant algorithms for finding max flows). If the max

flow network application example: committee assignment problem 2

flow has value z1 + z2 + · · ·+ zn (that is, if it completely saturates all
the incoming edges to the sink), then a valid committee assignment
exists, and we can read it off by assigning person pi to committee cj

if and only if the edge (pi, cj) has a flow of 1. Otherwise, no valid
committee assignment exists.

Runtime analysis

Ford-Fulkerson can be implemented to run in O(m ·min(Cs, Ct)),
where m is the number of edges in the network, Cs is the total ca-
pacity of edges leaving the source node s, and Ct is the total capacity
of edges entering the target node t. In our case, there are |P| edges
from s to all the pi, |C| edges from all the cj to t, and a maximum of
|P||C| internal edges (the worst case is if everyone is willing to be on
every committee), for a total of m = |P|+ |C|+ |P||C| = O(|P||C|)
edges. Also, we can assume that Ct ≥ Cs (otherwise it is impossible Actually we could be even more pre-

cise: the number of edges is exactly
|P|+ |C|+ ∑i |Wi |.

to fill all the committees). The total capacity of edges entering t is
z1 + z2 + · · · + zn = Z, the total number of committee slots to be
filled. Overall, then, this algorithm will run in O(|P| · |C| · Z) time,
the product of the number of people, number of committees, and
number of committee slots.

Proof

Why does this work? The essential idea is to prove that valid com-
mittee assignments correspond exactly to maximum flows on the
network G we constructed. We start be explaining how to construct a
committee assignment from a given flow, or vice versa.

• Given a flow f , construct a committee assignment by assigning
person pi to committee cj if and only if there is a unit of flow
going along the edge (pi, cj).

• Likewise, given a committee assignment, put one unit of flow
along edge (pi, cj) if and only if person pi has been assigned to
committee cj; then add flow to edges from s or edges to t in such a
way that flow is preserved at each vertex.

We now need to show that valid flows correspond to valid com-
mittee assignments and vice versa.

It is probably possible to recast these
two lemmas as a single “if and only
if” statement with a single, combined
proof; but I write them out separately
here for simplicity and to emphasize
the need for both directions. It is
easily possible to imagine scenarios
where one of these directions would
be true but not the other. For example,
if the capacity of the (pi , cj) edges
was ∞ instead of 1, then not every
valid flow would be a valid committee
assignment; or if the capacity of the
(s, pi) edges was 1 instead of mi , then
not every valid committee assignment
would yield a valid flow.

Lemma 0.1. If we start with a valid flow f , then the corresponding commit-
tee assignment will respect everyone’s preferences (though it may not fill all
the committee seats). Moreover, the number of committee seats filled will be
equal to the value of the flow.

flow network application example: committee assignment problem 3

Proof. The fact that the number of committee seats filled is equal
to the value of the flow is easy to see, since every unit of flow has
to pass through exactly one of the edges from some pi to pj (since
they all have capacity 1), and for each such edge we fill exactly one
committee seat. For the same reason, we can never have the same
person more than once on the same committee.

To see that everyone’s preferences will be respected, we argue as
follows.

• Suppose person pi is assigned to x committees, where x > mi

(i.e. they are assigned to more committees than they were willing
to be on). Then by our construction that means there must have
been x different edges from pi to various cj with one unit of flow
along each. So there would be x units of flow leaving node pi, and
by preservation of flow there must therefore be x units entering
node pi along the edge from s. But this is a contradiction since the
capacity of that edge is mi.

• It is also clear that no one can ever be assigned to a committee
they are not willing to be on, because there are no edges between
any person and a committee they don’t want to be on.

SDG

Lemma 0.2. If we start with a committee assignment that respects every-
one’s preferences (possibly with some seats unfilled), then the corresponding
flow will be valid and will have a value equal to the number of filled commit-
tee seats.

Proof. To show that a flow network is valid, we have to show that
flow is preserved at each vertex and that the flow never exceeds the
capacity of any edge.

• Flow will be preserved at each vertex because we explicitly con-
structed the flow that way.

• Flow along any (pi, cj) edge will never exceed the capacity (namely,
1), since we explicitly put a flow of 1 (or 0) along these edges.

• Flow along any (s, pi) edge will never exceed the capacity of mi,
since the flow along this edge will be equal to the number of
(pi, cj) edges with 1 unit of flow, which is by construction equal
to the number of committees person pi is assigned to. Since the
committee assignment respects pi’s preferences we know they
aren’t assigned to more than mi committees.

• Flow along any (cj, t) edge will never exceed the capacity of zi,
since by similar reasoning this flow will be equal to the number of

flow network application example: committee assignment problem 4

people assigned to committee cj, which can’t be more than zi for a
valid committee assignment.

SDG

We can now make short work of the main result:

Theorem 0.3. The committee assignment problem has a solution if and only
if the corresponding flow network has a max flow equal to z1 + · · ·+ zn.

Proof. If there exists a solution to the committee assignment problem,
then by Lemma 0.2 there exists a corresponding valid flow which will
have value z1 + · · · + zn. This is a max flow since it is equal to the
total capcity coming into vertex t.

Conversely, if there is a max flow equal to z1 + · · · + zn, then by
Lemma 0.1 there is a corresponding valid committee assignment
which fills all the committee seats. SDG

