
CSCI 382: Algorithms – Fall 2019 Brent Yorgey

The first page of your homework submission must be a cover sheet
answering the following questions. Do not leave it until the last minute;
it’s fine to fill out the cover sheet before you have completely finished the
assignment. Assignments submitted without a cover sheet, or with a cover
sheet obviously dashed off without much thought at the last minute, will not
be graded.

• How many hours would you estimate that you spent on this assignment?

• Explain (in one or two sentences) one thing you learned through doing this
assignment.

• What is one thing you think you need to review or study more? What do
you plan to do about it?
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Question 1 (K&T 2.2). Suppose you have algorithms with the six running
times listed below. (Assume these are the exact number of operations per-
formed as a function of the input size n.) Suppose you have a computer that
can perform 1010 operations per second, and you need to compute a result
in at most an hour of computation. For each of the algorithms, what is the
largest input size n for which you would be able to get the result within an
hour? For answers smaller than 1010, give your answer as an exact integer;
for larger answers you may provide an approximation.

1

1. n2

2. n3

3. 100n2

4. n log2 n

5. 2n

6. 22n

7. n!

In addition to O, Θ, and Ω, we will also sometimes use the notation
o(g(n)) (little-o) to mean that a function is O(g(n)) but not Θ(g(n)). So, if
limn→∞ T(n)/g(n) = 0, then T(n) is o(g(n)). Intuitively, if big-O is like
“less than or equal to”, little-o is like “less than”; if f (n) is o(g(n)) then f
“grows strictly more slowly than” g.

Question 2 (Some asymptotic properties).

(a) Show that nj is o(nk) whenever j < k.

(b) Prove that loga n is Θ(logb n) for any positive integer bases a, b > 1. Hint: recall, or look up, the change-of-base
formula for logarithms.Conclude that we are justified in writing simply Θ(log n) without caring

about the base of the logarithm.

(c) Prove that nk is o(bn) for any positive integer k and any real number
b > 1. For example, n295 is o(1.0001n). In the long run, any polynomial
function grows more slowly than any exponential function! Hint: use L’Hôpital’s rule k times. Recall

that the derivative of bn with respect to n is
bn ln b.
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Question 3 (K&T 2.3). Take the following list of functions and arrange
them in ascending order of asymptotic growth rate. That is, if function g(n)
immediately follows function f (n) in your list, then it should be the case that
f (n) is O(g(n)). Please prove/justify your claims.

1. f1(n) = n2.5

2. f2(n) =
√

2n

3. f3(n) = n + 10

4. f4(n) = 10n

5. f5(n) = 100n

6. f6(n) = n2 log n

Question 4. Characterize the asymptotic behavior of each of the following
in terms of n, using Θ. Give a brief justification for each answer. For
items asking for the time needed to perform some operation or solve some
problem, you should describe the worst case running time of the best possible
algorithm.

Please come ask for help if you are unsure
about any of these!

(a) 1 + 2 + 3 + 4 + · · ·+ n

(b) Average number of array lookups needed to find a given element in a
sorted array of length n.

(c) Number of two-element subsets of a set of size n.

(d) 1 + 2 + 4 + 8 + · · ·+ 2n

(e) Total number of nodes in a complete binary tree with n leaves.
︸ ︷︷ ︸

n
4(e)

(f) Number of edges in a graph with n nodes, where every node is connected
to every other node.

4(f)

(g) Number of different ways to arrange n people in a line.

(h) Average number of steps needed to find a given element in a linked list of
length n.

(i) Biggest integer that can be represented with n bits.

(j) Worst-case number of swaps needed to sort an array of length n if you are
only allowed to swap adjacent elements.

(k) Worst-case number of steps needed to check whether two lists, each con-
taining n integers (not necessarily sorted), have any element in common. 4(k)
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(l) Number of array lookups performed by this Python code:

for i in range(0,n):

for j in range (0,i):

sum += array[i][j]

(m) Number of addition operations performed by this Java code:

for (int i = 0; i < n; i += 3) {

sum = sum + i;

}

(n) Total number of calls to println performed by this Java code:

for (int i = 1; i < n; i *= 2) {

for (j = 0; j < 20; j++) {

System.out.println(i + j);

}

}

(o) Total number of calls to print performed by this Python code:

def foo(n):

print(n)

if n > 0:

foo(n-1)

foo(n-1)

Question 5 (K&T 2.8). You’re doing some stress-testing on various models
of glass jars to determine the height from which they can be dropped and
still not break. The setup for this experiment, on a particular type of jar, is
as follows. You have a ladder with n rungs, and you want to find the highest
rung from which you can drop a copy of the jar and not have it break. We call
this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle rung,
see if it breaks, and then recursively try from rung n/4 or 3n/4 depending on
the outcome. But this has the drawback that you could break a lot of jars in
finding the answer.

If your primary goal were to conserve jars, on the other hand, you could
try the following strategy. Start by dropping a jar from the first rung, then the
second rung, and so forth, climbing one higher each time until the jar breaks.
In this way, you only need a single jar—at the moment it breaks, you have the
correct answer—but you may have to drop it n times (rather than log n times
as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you’re
willing to break more jars. To understand better how this trade-off works at
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a quantitative level, let’s consider how to run this experiment given a fixed
“budget” of k ≥ 1 jars. In other words, you have to determine the correct
answer—the highest safe rung—and can use at most k jars in doing so.

(a) Suppose you are given a budget of k = 2 jars. Describe a strategy for
finding the highest safe rung that requires you to drop a jar at most f (n)
times, for some function f (n) that grows slower than linearly. (In other
words, f (n) should be o(n), that is, limn→∞ f (n)/n = 0.)

(b) Now suppose you have a budget of k > 2 jars, for some given k. De-
scribe a strategy for finding the highest safe rung using at most k jars.
If fk(n) denotes the number of times you need to drop a jar accord-
ing to your strategy, then the functions f1, f2, f3, . . . should have the
property that each grows asymptotically slower than the previous one:
limn→∞ fk(n)/ fk−1(n) = 0 for each k.
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