CSCI 382: Algorithms — Fall 2019 Brent Yorgey

The first page of your homework submission must be a cover sheet
answering the following questions. Do not leave it until the last minute;
it’s fine to fill out the cover sheet before you have completely finished the
assignment. Assignments submitted without a cover sheet, or with a cover
sheet obviously dashed off without much thought at the last minute, will not
be graded.

* How many hours would you estimate that you spent on this assignment?

» Explain (in one or two sentences) one thing you learned through doing this
assignment.

* What is one thing you think you need to review or study more? What do
you plan to do about it?

Homework 8 (Dynamic programming II) 1 Due: 1:10pm, Friday, November 1

CSCI 382: Algorithms — Fall 2019 Brent Yorgey

Question 1. This problem is similar to one we did in class, but slightly more
general. Suppose we have a set {x1, X2, ..., X, } of n positive integers, and

a target sum S, which is a positive integer. In class, we considered finding a
subset of {x1,...,x,} whose sum is exactly equal to S. Instead, let’s now
consider finding a subset whose sum is as close to S as possible without go-
ing over; that is, the subset with the largest possible sum < S. For example,
given the set {1,2,7,12} and the target sum 18, there is no subset which
sums exactly to 18, but the one which comes closest without going over is
{12,2,1} which sums to 15. Note that {12, 7}, with a sum of 19, is closer to
the target in an absolute sense, but it is greater than the target; we are inter-
ested in the biggest sum which is < the target.

(a) Describe a simple brute-force algorithm for solving this problem. What is
the running time of the algorithm?

(b) Using dynamic programming, describe an algorithm with running time
©(nS). Be sure that you explain how to find not only the maximum

possible sum, but also the actual subset which has that sum. Justify the
correctness of your algorithm.

(c) This is known as a psuedopolynomial-time algorithm: the running time is
a polynomial in the value of S, but actually exponential in terms of the size
of the input (i.e. the number of bits needed to represent S).

Give one example of a set of inputs for which your dynamic programming
solution would be faster, and one example of a set of inputs for which the
brute force algorithm would be faster.

Question 2. Consider the problem of making change for C cents using the
fewest possible number of coins. Assume that each coin’s value is an integer.

(a) Describe a greedy algorithm to make change for C cents using US quar-

ters, dimes, nickels, and pennies. It turns out that the greedy algorithm is
actually optimal for US coins (and most
(b) Give a set of coin denominations for which the greedy algorithm does not real-world coin systems), though coming up

. with a proof of this fact is nontrivial.
yield an optimal solution. Your set should include a penny so that there is P

a solution for every value of C.

(c) Design and analyze an algorithm to make change using the fewest number
of coins that works for any set of coins. That is, as input your algorithm
should take

* n, the number of different coin types;

e alistcq, 0, ..., ¢y giving the values of the different coins (you may
assume they are already sorted from smallest to largest); and

* the number of cents C we would like to make change for.

Homework 8 (Dynamic programming II) 2 Due: 1:10pm, Friday, November 1

Let $m[k,s]$ be the best possible sum using only x_1 through x_k which is at most s.

CSCI 382: Algorithms — Fall 2019 Brent Yorgey
As output your algorithm should either report that it is not possible to
make the required amount C using the given coins, or give a multiset! ! A multiset is like a set that allows duplicate

of coins which add up to C such that the number of coins in the multiset elements.

is as small as possible. For example, if given as inputc; = 1,¢cp = 5,

¢z = 20 and the target value C = 47, your algorithm should output
{20,20,5,1,1}. Note that we assume there is an unlimited supply of coins
of each type. Be sure to justify your algorithm’s correctness and analyze
its time complexity.

Question 3 (Derived from K&T 6.6). In a word processor, the goal of loose
justification is to take text with a ragged right margin, like this,

Call me Ishmael.

Some years ago,

never mind how long precisely,

having little or no money in my purse,

and nothing particular to interest me on shore,
I thought I would sail about a little

and see the watery part of the world.

and turn it into text whose right margin is “as even as possible”, like this:

Call me Ishmael. Some years ago, never
mind how long precisely, having little
or no money in my purse, and nothing
particular to interest me on shore, I
thought I would sail about a little
and see the watery part of the world.

To make this precise enough for us to start thinking about how to write
a justifier for text, we need to figure out what it means for the right mar-
gins to be “even”. Suppose our text consists of a sequence of words, W =
{wl, wy, ..., wn} where w; consists of ¢; characters. We have a maximum
line length of L. We will assume we have a fixed-width font, so we just need
to make sure that the number of characters on each line is no more than L.

A formatting of W consists of a partition of the words in W into lines. In
the words assigned to a single line, there should be a space after each word
except the last; and so if Wj, Wit1, - .., W are assigned to one line, then we
should have

Cx + Z (c;i+1) <L
j<i<k

We will call an assignment of words to a line valid if it satisfies this inequal-
ity. The difference between the left-hand side and the right-hand side will be
called the slack of the line—that is, the number of spaces remaining at the
right margin. For example, suppose L = 10. Then

Call me Ishmael.

Homework 8 (Dynamic programming II) 3 Due: 1:10pm, Friday, November 1

CSCI 382: Algorithms — Fall 2019 Brent Yorgey

is not valid, since it has length (4 4+ 1) + (2 + 1) + 8 which is greater than
10. On the other hand,

Call me

is valid, and has a slack of 3, since it has length only 7, leaving 3 remaining
spaces at the end.

We will say that a formatting is optimal when the sum of the squares of
the slacks of all lines (including the last line) is minimized.

(a) Describe a greedy algorithm to find a formatting of a list of words, and

give an example where your greedy algorithm does not produce an optimal
solution.

(b) Using dynamic programming, design and analyze an efficient algorithm
to find an optimal formatting of a set of words W into valid lines for a
given line length L. (As usual, “analyze” means to prove it is correct, and
analyze its asymptotic running time.)

(c) Why did we use the sum of the squares instead of just, say, the sum? That Big hint
is, what sort of bias does this optimization function create?

Question 4. (Optional/Extra Credit)

If you want some practice actually implementing a dynamic programming
solution to a problem, write a program that implements your algorithm from
Question 3. Your program should take two command-line arguments: (1) an
integer representing the maximum line length; and (2) a file name. It should
then output a justified version of the file to stdout using the algorithm
above.

For example, suppose lorem. txt contains the text:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque

rhoncus interdum odio, mattis finibus eros imperdiet non. Praesent egestas lectus.

Then running your program with the arguments 25 and lorem. txt should
print

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit. Quisque
rhoncus interdum

odio, mattis finibus
eros imperdiet non.

Praesent egestas lectus.

which is an optimal formatting of the text into lines of length at most 25.
Also available is a file neruda . tar which contains a Pablo Neruda
poem together with two outputs: neruda.50.out and neruda.30.out

Homework 8 (Dynamic programming II) 4 Due: 1:10pm, Friday, November 1

Let score[i] denote the best score achievable using only the first i words.
To compute score[k], focus on the last line. First try putting just one word on the last line, then try two words, then three, ... and pick the best resulting score.

CSCI 382: Algorithms — Fall 2019

Brent Yorgey

are the results of running my solution on neruda using a line length of
50 and 30, respectively. Note that in both cases, there are multiple correct
solutions with the same minimum score. Your program may not produce
exactly the same output as mine, but you should ensure that it produces a
solution with the same score.

Homework 8 (Dynamic programming II) 5

Due: 1:10pm, Friday, November 1

