
CSCI 382: Algorithms – Fall 2019 Brent Yorgey

We have spent time exploring some of the theoretical aspects of NP-
completeness, as well as a sampling of NP-complete problems. On this
assignment, you will explore the more practical side of NP-completeness:
what can you do when you really, actually need to solve an NP-complete
problem?

It turns out that for quite a few natural NP-complete problems, even
though all known algorithms take exponential time in the worst case, the
problems can be solved reasonably quickly on the particular kinds of inputs
that arise in practice. A paradigmatic example is the SAT problem which we
explored in class. In theory, no one knows any way to solve SAT instances
which is asymptotically faster than just trying all possible assignments; in
practice, however, there are algorithms for solving SAT which seem to be
quite fast on the kinds of SAT instances which actually turn up in practice,
even with up to tens of thousands of variables. These algorithms are imple-
mented in software known as SAT solvers; developing and improving SAT
solvers is an active area at the intersection of theory and practice.

In practice, then, if you need to solve an NP-complete problem, one good
strategy is to reduce your problem to SAT, and then give the resulting SAT
instance to an existing SAT solver. On this assignment you will carry out this
kind of practical reduction strategy for a particular NP-complete problem
known as GRAPH COLORING.

What to turn in

You should turn in two files:

• certificate.txt, described in the section “Coloring your graph”
below.

• Whatever program(s) you used to help you generate certificate.txt.

Background: graph coloring

Suppose we have an undirected graph G = (V, E). Given some set of colors
C, a coloring of G is a function χ : V → C, that is, an assignment of a color
to each vertex. A valid coloring is one for which no two adjacent vertices
have the same color; that is, χ(u) 6= χ(v) for every (u, v) ∈ E.

For example, Figure 1 shows a valid coloring of a graph with 7 vertices.
You can check that no two adjacent vertices have the same color.

Figure 1: A valid 4-coloring of a graph with
7 vertices

A k-coloring is a valid coloring of a graph which uses at most k col-
ors. The example shown in Figure 1 is a 4-coloring (and also a 5-coloring,
and a 26-coloring, and so on). A graph G is called k-colorable if it has a
valid k-coloring. Finally, the chromatic number of a graph G is the smallest
k for which G is k-colorable. The graph shown in Figure 1 actually has a

Homework EC (SAT) 1 Due: 1:10pm, Friday, December 13

CSCI 382: Algorithms – Fall 2019 Brent Yorgey

chromatic number of 3—can you find a valid 3-coloring (and prove that no
2-coloring exists)?

Given a graph G and a number k, the GRAPH COLORING problem
asks: is the graph k-colorable? There are k|V| possible colorings to check,
so a brute force algorithm is definitely not going to work. In fact, this
problem is NP-complete for k ≥ 3, which can be proved by reduction For k = 2, however, it can be solved

efficiently—can you figure out how?from 3-SAT. The proof has a similar flavor to the reduction 3-SAT ≤P

INDEPENDENT SET we did in class: given a 3-SAT instance, one
builds a particular graph out of “gadgets” which encodes the constraints given
by the 3-SAT clauses, in such a way that a 3-coloring of the graph corre-
sponds to a valid truth assignment. For details of the proof, see, for example,
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/

sat.pdf.

Defining your graph

For this assignment you will work with your own personal graph. Here is
how to determine your graph:

1. Pick a specific string to represent your name. For example, mine might be
"Brent Yorgey" or "Brent A. Yorgey" or "Dr. Yorgey"—
it does not matter what string you pick, as long as you specify it exactly.

2. Find the MD5 hash of your string, which should yield a 16-byte hash
value. For example, in Python 2.x, given your chosen string stored in a
variable name, one can write

import md5

hash_bytes = md5.new(name).digest()

to compute the MD5 hash. In Python 3.x:

import hashlib

hash_bytes = hashlib.md5(b"Your Name").digest()

In Java, one can write something like

import java.security.*;

byte[] bytesOfMessage = name.getBytes("UTF-8");

MessageDigest md = MessageDigest.getInstance("MD5");

byte[] hash_bytes = md.digest(bytesOfMessage);

Homework EC (SAT) 2 Due: 1:10pm, Friday, December 13

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/sat.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/sat.pdf

CSCI 382: Algorithms – Fall 2019 Brent Yorgey

3. The resulting 16-byte hash can of course be thought of as a sequence
of 128 bits. We can use a sequence of bits to encode an undirected, un-
weighted graph as follows. Each bit records the presence or absence of a
single edge: a 1 bit means the edge is present, and 0 means it is absent. We
assume that the vertices of the graph are numbered from 0 to n− 1.

• The index-0 bit, that is, the least significant or last bit, corresponds to
the edge (1, 0).

• The bit at index 1, i.e. the second-to-last bit, corresponds to (2, 0), and
the bit at index 2 corresponds to (2, 1).

• The next three bits correspond to (3, 0), (3, 1), and (3, 2).

The general pattern is that the first 1 + 2 + 3 + · · · + k = k(k + 1)/2
bits (counting from the end of the bit string) correspond to all the possible
edges involving vertices numbered 0 through k; the next k + 1 bits after
that correspond to edges from vertex k + 1 to all the smaller vertices,
starting with vertex 0.

For example, we need (4 · 5)/2 = 10 bits to encode a graph with 5
vertices; the graph shown in Figure 2 is encoded by 0010001101. The
last bit (a 1) indicates that there is an edge from vertex 1 to vertex 0; the
second-to-last bit (a 0) indicates that there is no edge from 2 to 0; and so
on.

4

3

2

1

0
Figure 2: The graph encoded by
0010001101.

In general, to determine whether vertices i and j are connected, first sort
them so i > j, and then look at the bit with index i(i− 1)/2 + j.

Since 16(16− 1)/2 = 120 < 128 (but 17(17− 1)/2 = 136 > 128),
your 128-bit hash value defines a particular undirected graph with 16
vertices. (The remaining 8 bits of your hash value are not used.)

Note that there is an annoying mismatch between the way we are number-
ing the bits (starting from the right) and the way the individual bytes in an
array or string are numbered (starting from the left). To make things easier
on yourself, after computing the MD5 hash you may want to reverse the
list/array of bytes, so that the last byte will be at index 0, the second-to-last
at index 1, and so on. Then bit j will be the (j mod 8)th bit in the bj/8cth
byte. Alternately, you can just turn your list of bytes into a list of bits, and
then reverse the entire list.

As an example, my graph (generated from the string Brent Yorgey) is
shown in Figure 3. For example, the final 10 in the hexadecimal representa-
tion of the hash corresponds to the bits 00010000, which correspond to edges
in the graph as follows:

0 0 0 1 0 0 0 0
(4,1) (4,0) (3,2) (3,1) (3,0) (2,1) (2,0) (1,0)

As you can see, there is indeed an edge between vertices 1 and 3 in the
graph, and no edges between any of the other indicated pairs of vertices. To

Homework EC (SAT) 3 Due: 1:10pm, Friday, December 13

CSCI 382: Algorithms – Fall 2019 Brent Yorgey

15

14

1312

11

10

9

8

7

6

5 4

3

2

1

0

Figure 3: The graph generated by “Brent
Yorgey”, corresponding to the hash ad 02
2f e3 f6 88 00 b6 f1 db 37 a8
f8 e1 4b 10

make sure you understand how a hash value determines a graph, you can
spot-check other edges for yourself: pick a pair of vertices and check that the
corresponding bit in the hash value is what you expect.

Warning: be careful that you don’t accidentally drop leading zeros when
computing the hash! As a test you can hash my name and make sure that the
hexadecimal 02 and 00 are handled properly.

Coloring your graph

The question you now need to answer is: what is the chromatic number of
your graph? Most randomly chosen graphs with 16 vertices seem to have
chromatic number 5, so that wouldn’t be a bad guess, but of course it could in
theory be as small as 1 (if your graph has no edges) or as large as 16 (if your
graph includes every possible edge). Empirically, it seems likely that at least
one of you will have a graph with chromatic number 6. In any case, guessing
the right chromatic number would not be enough anyway: in addition to
determining the chromatic number k, you should construct an actual valid
k-coloring, which can serve as an efficiently-checkable certificate that your
graph is indeed k-colorable. On the other hand, coming up with an

efficiently-checkable certificate proving
that your graph is not (k− 1)-colorable is
quite a different story, and is likely to be
impossible, though no one knows for sure.

Ultimately, you should turn in a file named certificate.txt contain-
ing three lines:

1. The first line should contain the exact string you chose to generate your
graph.

2. The second line should contain a single number, the chromatic number k
of your graph.

3. The third line should contain 16 characters specifying a valid coloring for
the vertices 0 . . . 15 in your graph. It does not matter which characters you

Homework EC (SAT) 4 Due: 1:10pm, Friday, December 13

CSCI 382: Algorithms – Fall 2019 Brent Yorgey

use, but there should be exactly k different characters, one standing for
each color.

For example, my certificate.txt looks like this:

Brent Yorgey

5

eeedcddbabaccebd

You can check that assigning the same color to the first three vertices, a
different color to the next vertex, and so on, is indeed a valid 5-coloring of
the graph generated by the string Brent Yorgey, as shown in Figure 4.

15

14

1312

11

10

9

8

7

6

5 4

3

2

1

0

Figure 4: A 5-coloring of the “Brent
Yorgey” graph

At this point you might wonder how you are supposed to come up with
a coloring for your graph. Even with the relatively small value n = 16,
a brute force algorithm might have to check, for example, up to 516 =

152587890625 potential 5-colorings. One might try a greedy strategy: for
each vertex from 0 . . . n− 1, pick the smallest color that is unused by any of
the previous vertices it is connected to. But as you can see if you try it, this
does not work. For example, this greedy algorithm on my graph produces
the (non-optimal) 6-coloring shown in Figure 5. Notice how vertex 14 is
given a sixth color (brown), since by the time it is reached, it has at least one
neighbor with each of 5 different colors.

In fact, we will use a tried-and-true technique for attacking computation-
ally hard problems like this: reduce the problem to SAT, and hand it off to
a SAT solver, a program specifically designed to solve SAT instances. Even
though all such programs (that we know of) take exponential time in the
worst case, they are astonishingly efficient in the general case.

Homework EC (SAT) 5 Due: 1:10pm, Friday, December 13

CSCI 382: Algorithms – Fall 2019 Brent Yorgey

15

14

1312

11

10

9

8

7

6

5 4

3

2

1

0

Figure 5: A non-optimal greedy coloring of
the “Brent Yorgey” graph

Using the Yices SAT solver

For this assignment, you will use a SAT solver called Yices, available at
http://yices.csl.sri.com/. There are many solvers available; I
chose Yices simply because it is freely available on multiple platforms and
easy to get started with. (If you want to try a different one for some reason,
you are welcome to.)

Download the latest version of Yices (2.5.2 as of this writing) for your
operating system and unzip it somewhere. In the bin/ folder you should
find several executables, one of which is yices-sat. This is the SAT
solver that comes with Yices. (In fact, Yices is not just a SAT solver, but
actually something called an “SMT solver”, which is much more general and
powerful than a SAT solver; ask me if you are interested in the details.)

The format expected by yices-sat is described at http://people.
sc.fsu.edu/~jburkardt/data/cnf/cnf.html. The short version
is that the first line should contain

p cnf n k

where the text p cnf occurs literally, and n and k are replaced by the cnf stands for conjunctive normal form.

number of variables and the number of clauses, respectively. For example,
p cnf 7 20 would denote a SAT instance with 7 variables and 20 clauses.

The next k lines should describe the clauses. Each line consists of a list of
integers, separated by spaces, with an extra 0 at the end. The integers indicate
variables, numbered 1 . . . n, with an integer i corresponding to xi and −i
corresponding to xi. For example, to encode the clause (x1 ∨ x3 ∨ x7 ∨ x4)

one would write

1 -3 7 -4 0

Homework EC (SAT) 6 Due: 1:10pm, Friday, December 13

http://yices.csl.sri.com/
http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html

CSCI 382: Algorithms – Fall 2019 Brent Yorgey

As a complete example, suppose we have 4 variables x1 . . . x4 and the 3
clauses

(x1 ∨ x4), (x2 ∨ x3 ∨ x4), (x1 ∨ x3 ∨ x4).

We would encode this as the file

p cnf 4 3

1 4 0

2 -3 -4 0

-1 3 4 0

Suppose this was saved in a file called example.cnf. Then we can give it
as input to yices-sat just by giving the file name as an argument at the
command line:

$ yices-sat example.cnf

sat

(Note that $ indicates the command prompt, and should not be typed.) Yices
returns immediately and tells us the clauses are satisfiable. To see the actual
assignment it came up with, pass it the -m option:

$ yices-sat -m example.cnf

sat

-1 -2 -3 4 0

It tells us that a satisfying assignment consists of setting x1, x2, and x3 to F,
and x4 to T.

On the other hand, given the input file

p cnf 2 4

1 2 0

1 -2 0

-1 2 0

-1 -2 0

yices-sat prints unsat, telling us that the set of clauses is not satisfiable
(as you can easily verify).

Reducing to SAT

You will need to write a program that reduces k-colorability of your graph
to a SAT instance, and outputs an appropriate input file for yices-sat.

Hint:
You can then try each value of k = 1, 2, . . . until you find the smallest one
for which the corresponding instance is satisfiable. (In general one could of
course use binary search, but for such small values of k it is hardly worth the
effort.) Then use the satisfying assignment generated by Yices to construct a
valid k-coloring of your graph.

Homework EC (SAT) 7 Due: 1:10pm, Friday, December 13

Use n*k Boolean variables, one for each combination of vertex and color.

CSCI 382: Algorithms – Fall 2019 Brent Yorgey

Hint: I strongly suggest that you also write a program to check the validity
of a certificate! This is much easier than the program you will need to write
to find the certificate in the first place.

Homework EC (SAT) 8 Due: 1:10pm, Friday, December 13

	What to turn in
	Background: graph coloring
	Defining your graph
	Coloring your graph
	Using the Yices SAT solver
	Reducing to SAT

