
CSCI 382: Algorithms—Fall 2019 Brent Yorgey

Exam 2—D&C, DP, flow networks

In preparing your solutions to the exam, you are allowed to use any
sources including your textbook, other students and professors, previous
homeworks and solutions, or any sources on the Internet. You may ask me
for feedback on potential solutions, but I will not give you any hints. Of
course, I am also happy to answer general questions, go over homework
problems, or answer clarifying questions about exam problems.

The exam will take place in class on Friday, November 15 (MC Reynolds
317, 1:10-2:00pm). You are not allowed to bring any notes, textbooks, cal-
culators, or any other resources with you to the exam. Bring only something
to write with; I will provide a fresh copy of the exam, paper for writing your
solutions, and scratch paper.

As usual, to “design and analyze” an algorithm means to (a) describe the
algorithm, (b) prove/justify its correctness, and (c) analyze its asymptotic
running time. Full credit will only be given for the most efficient possible
algorithms. Algorithms must be clearly explained (using pseudocode if ap-
propriate) in sufficient detail that another student could take your description
and turn it into working code. You may freely cite any theorems proved in
class (without proof), or use algorithms covered in class as subroutines.

Midterm 2 1 1:10-2pm, Friday, November 15, 2019



CSCI 382: Algorithms—Fall 2019 Brent Yorgey

Question 1. Given an array A[0 . . . n − 1] of integers, a wobbly pair is a
pair of integers in the array that are “out of order”: that is, where i < j but
A[i] > A[j]. For example, the array

A = [2,−1, 17, 10, 3, 8]

has 6 wobbly pairs, namely, (2,−1), (17, 10), (17, 3), (17, 8), (10, 3), and
(10, 8). Put another way, if you imagine each number “looking” down the
array to its right, there is a wobbly pair each time a number can “see” another
number which is smaller than it. The number of wobbly pairs is in some
sense a measure of how far away A is from being sorted; in fact, the number You keep on using that word. I do not think

it means what you think it means.of wobbly pairs is exactly the minimum number of adjacent swaps needed to
sort the array, and a sorted array has zero wobbly pairs.

(a) Describe, and analyze the running time of, a simple brute-force algorithm
to compute the number of wobbly pairs in a given array.

(b) Now design and analyze a more efficient algorithm to compute the number
of wobbly pairs in a given array.

Midterm 2 2 1:10-2pm, Friday, November 15, 2019



CSCI 382: Algorithms—Fall 2019 Brent Yorgey

Question 2. You are given a set of n widgets and a positive integer G. Each
widget wi also has a froob value fi (a positive real number) and a grump
value gi (a positive integer). As you can tell from their names, froob is good
and grump is bad. Your goal is to pick a subset of the widgets such that their
total froob is as big as possible, subject to the constraint that their total grump
must be ≤ G (you can only deal with so much grump).

(a) Design and analyze an O(nG)-time algorithm to find an optimal subset,
given as input the number of widgets n, the maximum allowable grump
G, and two size-n arrays containing the froob and grump values for the
widgets. (You may assume the arrays are 1-indexed if it is helpful.) Be
sure your algorithm finds not just the maximum possible froob but an
actual subset of widgets which has that total froob.

(b) Explain (one sentence should be sufficient) why the problem would be
much harder if the grump values were allowed to be positive real numbers
rather than just positive integers.

Midterm 2 3 1:10-2pm, Friday, November 15, 2019



CSCI 382: Algorithms—Fall 2019 Brent Yorgey

Question 3. Define the Escape Problem as follows. We are given a directed Question 3 is adapted from Kleinberg &
Tardos, exercise 7.14.graph G = (V, E) (imagine a network of one-way roads; two-way roads

can be modelled by a pair of one-way roads in opposite directions). A certain
collection of nodes X ⊆ V are designated as populated nodes, and a certain
other collection S ⊆ V are designated as safe nodes. Assume that X and S
are disjoint, that is, no node is both populated and safe. Note, however, there
may be other nodes which are neither populated nor safe.

In case of an emergency, we want evacuation routes from the populated
nodes to the safe nodes. An evacuation route is a path that starts at some
populated node and ends at a safe node. There must be an evacuation route
for each populated node, and no two routes may share an edge. However, it
is OK if routes share vertices (including the possibility of multiple routes all
leading to the same safe node). That is, more formally, a set of evacuation
routes is a set of paths in G so that (i) each node in X is the tail of one path,
(ii) the last node on each path lies in S, and (iii) the paths do not share any
edges. Such a set of paths gives a way for the occupants of the populated
nodes to “escape” to S, without overly congesting any edge in G.

Given G, X, and S, describe and analyze a polynomial-time algorithm to
either find a set of evacuation routes, or decide that no such set of evacuation
routes exists.

Midterm 2 4 1:10-2pm, Friday, November 15, 2019


