
CSCI 490 problem set 1

When solving the homework, strive to create not just code that
works, but code that is stylish and concise. See the style guide on
the website for some general guidelines. Try to write small functions
which perform just a single task, and then combine those smaller
pieces to create more complex functions. Don’t repeat yourself: write
one function for each logical task, and reuse functions as necessary.

Validating Credit Card Numbers1

Most credit card providers rely on a checksum formula, the Luhn
algorithm (http://en.wikipedia.org/wiki/Luhn_algorithm), as a
straightforward line of defense against simple typos. (It does not
protect against fraud.)

In this section, you will implement the validation algorithm for
credit cards. It follows these steps:

• Double the value of every second digit beginning from the right.
That is, the last digit is unchanged; the second-to-last digit is dou-
bled; the third-to-last digit is unchanged; and so on. For example,
[1,3,8,6] becomes [2,3,16,6].

• Add the digits of the doubled values and the undoubled digits
from the original number. For example, [2,3,16,6] becomes
2+3+1+6+6 = 18.

• Calculate the remainder when the sum is divided by 10. For the
above example, the remainder would be 8.

If the result equals 0, then the number is valid.

1Adapted from the first practicum assigned in the University of Utrecht functional
programming course taught by Doaitse Swierstra, 2008-2009.

http://en.wikipedia.org/wiki/Luhn_algorithm


csci 490 problem set 1 2

Exercise 1 We need to first find the digits of a number. Define the
functions

toDigits :: Integer -> [Integer]

toDigitsRev :: Integer -> [Integer]

toDigits should convert positive Integers to a list of digits. (For 0
or negative inputs, toDigits should return the empty list.) toDigitsRev
should do the same, but with the digits reversed.

Example: toDigits 1234 == [1,2,3,4]

Example: toDigitsRev 1234 == [4,3,2,1]

Example: toDigits 0 == []

Example: toDigits (-17) == []

Exercise 2 Once we have the digits in the proper order, we need to
double every other one. Define a function

doubleEveryOther :: [Integer] -> [Integer]

Remember that doubleEveryOther should double every other num-
ber beginning from the right, that is, the second-to-last, fourth-to-last,
. . . numbers are doubled.

Example: doubleEveryOther [8,7,6,5] == [16,7,12,5]

Example: doubleEveryOther [1,2,3] == [1,4,3]

Exercise 3 The output of doubleEveryOther has a mix of one-digit
and two-digit numbers. Define the function

sumDigits :: [Integer] -> Integer

to calculate the sum of all digits.

Example: sumDigits [16,7,12,5] = 1 + 6 + 7 + 1 + 2 + 5 = 22

Exercise 4 Define the function

validate :: Integer -> Bool

that indicates whether an Integer could be a valid credit card num-
ber. This will use all functions defined in the previous exercises.

Example: validate 79927398713 = True

Example: validate 79927398714 = False

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 490 problem set 1 3

The Towers of Hanoi2

Exercise 5 The Towers of Hanoi is a classic puzzle with a solution
that can be described recursively. Disks of different sizes are stacked
on three pegs; the goal is to get from a starting configuration with
all disks stacked on the first peg to an ending configuration with all
disks stacked on the last peg, as shown in Figure 1.

⇓

Figure 1: The Towers of Hanoi

The only rules are

• you may only move one disk at a time, and

• a larger disk may never be stacked on top of a smaller one.

For example, as the first move all you can do is move the topmost,
smallest disk onto a different peg, since only one disk may be moved
at a time.

Figure 2: A valid first move.From this point, it is illegal to move to the configuration shown in
Figure 3, because you are not allowed to put the green disk on top of
the smaller blue one.

Figure 3: An illegal configuration.

For this exercise, define a function hanoi with the following type:

type Peg = String

type Move = (Peg, Peg)

hanoi :: Integer -> Peg -> Peg -> Peg -> [Move]

Given the number of discs and names for the three pegs, hanoi
should return a list of moves to be performed to move the stack of
discs from the first peg to the last.

Note that a type declaration, like type Peg = String above,
makes a type synonym. In this case Peg is declared as a synonym

2Adapted from an assignment given in UPenn CIS 552, taught by Benjamin Pierce

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 490 problem set 1 4

for String, and the two names Peg and String can now be used in-
terchangeably. Giving more descriptive names to types in this way
can be used to give shorter names to complicated types, or (as here)
simply to help with documentation.

Example: hanoi 2 "a" "b" "c" == [("a","b"), ("a","c"), ("b","c")]

Exercise 6 What if there are four pegs instead of three? That is, the
goal is still to move a stack of discs from the first peg to the last peg,
without ever placing a larger disc on top of a smaller one, but now
there are two extra pegs that can be used as “temporary” storage
instead of only one. Write a function similar to hanoi which solves
this problem in as few moves as possible.

It should be possible to do it in far fewer moves than with three
pegs. For example, with three pegs it takes 215 − 1 = 32767 moves to
transfer 15 discs. With four pegs it can be done in 129 moves. See Exercise 1.17 in Graham, Knuth,

and Patashnik, Concrete Mathematics,
second ed., Addison-Wesley, 1994.

If you are stuck, feel free to search for more information on the
Internet; be sure to cite any sources you use.

Exercise 7 Figure 4 shows several circles, cut by chords into one,
two, four, and six regions, respectively.

Figure 4: Circles cut by zero, one, two,
and three chords.The pictures with zero, one, and two chords show the maximum

possible number of regions (one, two, and four, respectively) which
can be created with that many chords. However, using three chords it
is possible to create more regions than shown.

In general, what is the maximum number of regions that can be
created using n chords? Write a paragraph explaining your answer,
along with a Haskell function

maxRegions :: Integer -> Integer

which computes this number. (Your explanation can be included
above the code as a comment.)

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Validating Credit Card NumbersAdapted from the first practicum assigned in the University of Utrecht functional programming course taught by Doaitse Swierstra, 2008-2009.
	The Towers of HanoiAdapted from an assignment given in UPenn CIS 552, taught by Benjamin Pierce

