CSCI 490 problem set 4
Due Tuesday, February 16

Revision 1: compiled Tuesday o'" February, 2016 at 15:51

On this problem set, when you are asked to prove something, you
should give a formal-style proof using a structured proof format and
equational reasoning. On the other hand, if you are asked to show or
justify something, an informal (but still convincing) argument will
suffice.

The exercises may refer to the following standard definitions:

length :: [a] -> Integer
length [] =0
length (_:xs) = 1 + length xs

map :: (a -> b) -> [a] -> [b]
map _ [] = [

map f (x:xs) = f x : map f xs

(++) :: [al -> [a] -> [al
1 ++ ys ys
(x:x8) ++ ys = x : (xs ++ ys)

1]

(.) :: (b-=>¢c) ->(a->b) ->a ->c
(g . ) x =g (f x

List induction

Exercise 1 You must complete at least three out of the following
seven proofs involving list induction. You need not do more than
three, although you may do more if you feel that the practice is use-
ful.

(a) Prove that map id = id.

(b) Prove that for all functions f and g of appropriate type,
map (f . g) = map £ . map g.
(c) Give a function f such that
length = foldr £f O,

and prove it.

To prove that two functions are equal,
it suffices to show they have the same
result on all inputs. That is, to prove

f = g, it suffices to prove that for all x
of the appropriate type, f x = g x.



CSCI 490 PROBLEM SET 4 2

(d) Prove that for all lists xs and ys,
length (xs ++ ys) = length xs + length ys.

(e) Give an alternate definition of (++) via foldr, and prove that your
implementation gives the same results as the standard definition.

(f) Prove that (++) is associative. That is, prove that for all lists xs, ys,
and zs,

(xs ++ ys) ++ zs = xs ++ (ys ++ zs).

(g) State and prove a theorem relating map and (++).

Difference lists and tree induction

Recall the isBST function from Problem Set 2, to test whether a bi-
nary tree is a valid binary search tree. One way to implement it is by
checking whether an inorder traversal of the tree is sorted, as follows:

data Tree a where
Empty :: Tree a

Node i a -> Tree a -> Tree a -> Tree a

foldTree :: b -> (a ->b -> b ->b) -> Tree a -> b
foldTree e n Empty =e
foldTree e n (Node a 1 r) = n a (foldTree e n 1) (foldTree e n r)

inorder :: Tree a -> [a]
inorder = foldTree [1 (\a 1 r -> 1 ++ [a]l ++ 1)

isSorted :: [Integer] -> Bool . . .
] o . Optional exercise for the curious: why
isSorted xs = and (zipWith (<) xs (tail xs)) doesn’t isSorted crash when given the

empty list as input?
isBST :: Tree Integer -> Bool

isBST = isSorted . inorder

However, as noted before, inorder takes O(n?) time in the worst
case. The remainder of this problem set first walks you through the
process of understanding why inorder can take O(n?) time, and
then through the development of an implementation with worst-case
O(n) running time.

Exercise 2 For each of the following functions, state its type, and
explain what it does.

(a) foldr (++) []
(b) foldl (++) []

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


http://creativecommons.org/licenses/by/4.0/

Exercise 3 (Extra Credit) Prove that

foldr (++) [1 = foldl (++) [1.

Although they have the same result, it turns out that these two
folds do not have the same time complexity!

Analyzing the time complexity of lazy programs turns out to be
somewhat tricky in general®. For the purposes of this assignment,
however, we can get away with just assuming that the functions are
strict (that is, that function arguments are fully evaluated before the
function body), which simplifies the analysis.

To analyze a function, we first assume that its arguments are com-
pletely evaluated, and then we count the number of reduction steps
needed to reach a result which is itself fully evaluated. A reduction
step is simply defined as replacing the left-hand side of a function
definition with its right-hand side.? For example, if evaluating the
function f takes constant time, map f xs takes time linear in the
length of xs—it has to do one reduction step for each cons in the list
(plus one more for the empty list).

Exercise 4

(a) Show that xs ++ ys has time complexity O(length xs), ie. fully
evaluating xs ++ ys requires a number of reduction steps linear
in the length of xs. Note in particular that the time complexity is
independent of the length of ys.

(b) Let xss [[T1] be a list of lists (of some type T which does not
really matter). Assume, for simplicity, that all the elements of xss
are lists of length 1. That is,

xss = [[x], [yl, [=2], ...]

Show that foldr (++) [] xss has time complexity O(length xss).

(c) What is the time complexity of foldl (++) []1 xss? Justify your
answer.

Now consider the type of binary parenthesizations,

data Parens a where
Leaf :: a -> Parens a

Bin :: Parens a -> Parens a -> Parens a

A value of type Parens a can be thought of as a binary tree with
data at the leaves, as illustrated in Figure 1. It can also be thought
of as a fully parenthesized sequence of a values, where each pair of

CSCI 490 PROBLEM SET 4 3

Hint: Exercise 3 is nontrivial. You will

probably need to prove a lemma about
foldl. Ask me if you want some hints
on what lemma to prove. Also, you are
welcome to assume without proof that
(++) is associative, whether or not you
chose to do Exercise 1(f).

' See Okasaki [1999] for a beautiful and
comprehensive treatment; come by my
office if you want to look at it.

?In general, one must be careful when
variables on the left-hand side of a
function definition are used multiple
times on the right-hand side; the values
of such variables will be shared and
only evaluated once. GHC's runtime
system actually maintains a graph of
expressions rather than just doing
simple textual substitution. However,
on this assignment the issue will not
come up.

Hint: it is not the same as for foldr!

Figure 1: An example value of type
Parens Integer

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


http://creativecommons.org/licenses/by/4.0/

CSCI 490 PROBLEM SET 4 4

parentheses contains two expressions (either a value of type a or an-
other parenthesized expression). For for example, the tree in Figure 1
corresponds to the parenthesized expression ((25)((1(23))6)).

Exercise 5 Write a fold for Parens, and use it to implement a func-

tion
flatten :: Parens a -> [a] Note that in various guises, operations
such as this are rather common—
which “removes the parentheses” by concatenating all the a values for example, consider traversing a
syntax tree representing a program and
together' collecting a list of errors or warnings.

Exercise 6 State the induction principle for Parens.

Exercise 7 What is the worst-case big-O time complexity of flatten,
where 7 is the number of values in the input tree? Hint: consider Exercise 4.

Now consider the type

type DList a = [a] -> [a]

of difference lists3. A value of type DList a is thus a function which 3 This terminology originates in Prolog.
transforms one list of type [a] into another. The idea is to use

DList a as a (slightly* strange) way to encode a list. In particular, +OK, very.

we will encode the list xs :: [a] as the function which prepends xs,

that is, the function
\ys -> xs ++ ys

which takes any list ys and yields xs ++ ys as the result.

Exercise 8 Implement functions
toDList :: [a] -> DList a

and
fromDList :: DList a -> [a].

toDList should send a list xs to its encoding as described above.
fromDList should send an encoding of a list back to the original list.

Exercise 9 If you have defined toDList and fromDList correctly,
exactly one of the following two statements should be true. Prove the
one that is true, and give a counterexample for the other.

® toDList . fromDList id

e fromDList . toDList id

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


http://creativecommons.org/licenses/by/4.0/

Exercise 10 Define a function
append :: DList a -> DList a -> DList a
such that
toDList (xs ++ ys) = toDList xs ‘append‘ toDList ys.

Prove it.
Exercise 11 Define emptyDList :: DList a (it should be an iden-
tity for append).
Exercise 12 What is the time complexity of

fromDList . foldr append emptyDList . map toDList?
What about

fromDList . foldl append emptyDList . map toDList?
Briefly justify your answers.
Exercise 13 Now, let’s bring everything together. Using the func-
tions you have defined previously, define a variant function

flatten’ :: Parens a -> [a]

which works by converting the a values in the tree to DList a values

(representing singleton lists), combining them with append, and then,

at the end, converting the resulting DList a back to [a].

Exercise 14 Using the induction principle for Parens, prove that
flatten = flatten’. What is the worst-case big-O time complexity
of flatten’?

References

Chris Okasaki. Purely functional data structures. Cambridge Univer-
sity Press, 1999.

CSCI 490 PROBLEM SET 4 5

Hint: you will probably not get very far
on this problem without trying some
examples to develop your intuition. Just
try both functions on a short example
list, and write out the step-by-step
reductions.

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.


http://creativecommons.org/licenses/by/4.0/

	List induction
	Difference lists and tree induction

