
CSCI 490 problem set 5
Due Tuesday, February 23
Revision 2: compiled Thursday 18th February, 2016 at 16:47

While working on this problem set you may find it helpful to
make use of the λ-calculus evaluator available at https://fling.
seas.upenn.edu/~cis39903/cgi-bin/LC.cgi. There is also a command-
line λ-calculus interpreter; you can download an installer from the
course website.

You will not need to formally prove your answers on this problem
set, but you should justify them, e.g. by giving an example reduction
sequence that illustrates the behavior of some λ-calculus term you
have defined, or by giving an informal argument explaining why
your solution is correct.

What to turn in

• A document in both .lhs and .pdf form, as usual. In particular
the .lhs document should load cleanly in ghci and allow your
solution to Exercise 1 to be run.

• A text file with the definitions of your lambda calculus terms, in a
format suitable for loading into the lambda calculus evaluator.

To typeset your lambda calculus terms in LATEX, you can just use
verbatim environments; there’s no need to get fancy typesetting
them with actual lambdas and so on. However, if you do want to
typeset them in a fancy way, you can use the \lam and \app com-
mands defined in hshw.sty. For example,

\lam{x}{\lam{y}{\app{x}{y}}}

produces
λx. λy. x y.

These commands ensure proper spacing after the period and between
terms in an application.

Rubric

For full credit, your solutions should demonstrate a proficient under-
standing of the following topics:

• Lambda calculus syntax and semantics (e.g. αβη-equivalence,
bound and free variables, substitution, reduction)

• Church numerals

• Generalized Church encoding

https://fling.seas.upenn.edu/~cis39903/cgi-bin/LC.cgi
https://fling.seas.upenn.edu/~cis39903/cgi-bin/LC.cgi


csci 490 problem set 5 2

The untyped λ-calculus

Exercise 1 Consider the Haskell data type

data Term where

Var :: String -> Term

Lam :: String -> Term -> Term

App :: Term -> Term -> Term

which represents a naïve encoding of λ-calculus terms as Haskell
values. Write a function For extra (brownie) points, make sure it

takes linear time. . .

freeVars :: Term -> [String]

which computes the set of all free variables of a term. For example,

freeVars (App (Var "z") (Lam "y" (App (Var "y") (Var "x")))) = ["z","x"].

Natural numbers

Recall from lecture that we can represent natural numbers in the
λ-calculus by their Church encoding, that is, the natural number n is
represented by the λ-calculus term

λs. λz. s (s . . . (s z))

where the s is repeated n times. In other words, a natural number is
represented by its own fold, that is, a function which takes as arguments
a function s and starting value z, and applies s to z a certain number
of times.

We will abbreviate Church-encoded natural numbers as nλ. For
example,

3λ = λs. λz. s (s (s z)).

The following exercises ask you to build up facilities for doing com-
putation with natural numbers.

Exercise 2 Define the natural number 0λ, and define a function In order to test your natural number
functions in the λ-calculus evaluator,
you will want to evaluate things like,
e.g., plus two three S Z instead of
just plus two three. The reason is
that reduction gets “stuck” when the
outermost term constructor is a λ.
In order to “fully reduce” a Church-
encoded number like plus two three,
you can apply it to some arguments, in
this case, just two free variables S and Z

to stand in for successor and zero.

succ which takes a (Church-encoded) natural number and yields its
(Church-encoded) successor.

Exercise 3 Define a λ-calculus term plus that adds Church numerals.
That is, plus should have the property that

plus mλ nλ ≡ (m + n)λ,

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 490 problem set 5 3

where ≡ denotes αβη-equivalence of λ-calculus terms.

Exercise 4 Define a λ-calculus term mul that multiplies Church
numerals.

Exercise 5 Define a λ-calculus term exp that exponentiates Church
numerals, that is,

exp mλ nλ ≡ (mn)λ.
Feel free to define other named λ-
calculus terms if it makes your solu-
tions more modular/elegant/readable.

Exercise 6 Define a λ-calculus term iszero that decides whether a
Church numeral is zero. That is, when applied to a Church numeral,
it should evaluate to an appropriate Church-encoded boolean.

Church pairs

Exercise 7 Define λ-calculus terms pair, fst, and snd such that

Hint:fst (pair x y) ≡ x

(and similarly for snd).

Exercise 8 Define a λ-calculus term pred such that when n is posi- This problem is tricky! If you are stuck,
feel free to ask me for a hint.tive, pred applied to nλ is equivalent to (n − 1)λ (pred applied to zero

can just yield zero).

Exercise 9 Now define a λ-calculus term sub that subtracts Church
numerals (truncating at zero in the case of subtracting a larger num-
ber from a smaller).

Church lists

Exercise 10 Define λ-calculus terms nil and cons which represent the
constructors for (Church-encoded) lists.

Exercise 11 Define a λ-calculus term sum such that, for example,

sum (cons 3λ (cons 1λ (cons 4λ nil))) ≡ 8λ.

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

What is the fold for (a,b)? Think of it as having a single constructor Pair :: a -> b -> (a,b).
http://creativecommons.org/licenses/by/4.0/


csci 490 problem set 5 4

Exercise 12 Define a λ-calculus term filter which works similarly to
Haskell’s standard filter function.

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	What to turn in
	Rubric
	The untyped -calculus
	Natural numbers
	Church pairs
	Church lists

