
CSCI 490 problem set 3
Due Tuesday 9 February, 2016
Revision 1: compiled Tuesday 2nd February, 2016 at 13:04

Exercise 1 Implement a function

xor :: [Bool] -> Bool

which returns True if and only if there are an odd number of True
values contained in the input list. It does not matter how many False

values the input list contains. For example,

xor [False, True, False] == True

xor [False, True, False, False, True] == False

Your solution must be implemented using a fold.

Exercise 2 Implement map as a fold. That is, complete the definition

map' :: (a -> b) -> [a] -> [b]

map' f = foldr ...

in such a way that map' behaves identically to the standard map

function.

Exercise 3 Recall the definition of a binary tree data structure. The http://en.wikipedia.org/wiki/

Binary_treeheight of a binary tree is the length of a path from the root to the
deepest node. For example, the height of a tree with a single node is
0; the height of a tree with three nodes, whose root has two children,
is 1; and so on. A binary tree is balanced if the height of its left and
right subtrees differ by no more than 1, and its left and right subtrees
are also balanced.

You should use the following data structure to represent binary
trees. Note that each node stores an extra Integer representing the
size (total number of nodes) of the binary tree at that node.

data Tree a = Leaf

| Node Integer (Tree a) a (Tree a)

deriving (Show, Eq)

For this exercise, write a function, implemented using foldr,

mkBalancedTree :: [a] -> Tree a

mkBalancedTree = foldr ...

http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_tree


csci 490 problem set 3 2

which generates a balanced binary tree from a list of values.
For example, one sample output might be the following, also visu-

alized at right in Figure 1:

D

E

A

G

H

B

CF

I

J

Figure 1: A balanced tree

foldTree "ABCDEFGHIJ" ==

Node 10

(Node 4

(Node 1 Leaf 'F' Leaf)

'I'

(Node 2 (Node 1 Leaf 'B' Leaf) 'C' Leaf))

'J'

(Node 5

(Node 2 (Node 1 Leaf 'A' Leaf) 'G' Leaf)

'H'

(Node 2 (Node 1 Leaf 'D' Leaf) 'E' Leaf))

Your solution might not place the nodes in the same exact order,
but it should result in a balanced tree, with each subtree having a
correct computed size.

Exercise 4 Implement a fold for the type Nat, defined by

data Nat where

Z :: Nat

S :: Nat -> Nat

Exercise 5 Describe the set of all possible functions of type forall a. (a -> a) -> a -> a.

Exercise 6 Implement (sensible) functions with types You will need to enable the
Rank2Types extension, by putting
{-# LANGUAGE Rank2Types #-} at the
top of your .hs file.

Nat -> (forall a. (a -> a) -> a -> a)

and
(forall a. (a -> a) -> a -> a) -> Nat.

Note carefully where the parentheses are in the above types. We
haven’t specifically discussed types like this, but see if you can figure
out what they mean; ask me if you need a hint.

The following exercises concern the type of rose trees, where each
node contains a value of some type and any number of children (in-
cluding the possibility of zero children):

data Rose a where

Node :: a -> [Rose a] -> Rose a

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


csci 490 problem set 3 3

Exercise 7 Implement a function

mapRose :: (a -> b) -> Rose a -> Rose b.

Exercise 8 Implement a fold for Rose a. I’m not telling you the type; that’s part
of the fun.

84

10

9

3

9

67

2

5

1

Figure 2: A tree with height 4

Exercise 9 Using your fold, implement a function

height :: Rose a -> Integer.

Again, the height of a tree is defined as the length of the deepest
path from the root to any leaf. The height of a leaf (a node with no
children) is therefore zero. An example is shown in Figure 2.

84

10

9

3

9

67

2

5

1

Figure 3: A tree with width 6

Exercise 10 The width of a tree is defined as the length of the
longest path between two leaves. (That is, a path between two leaves
starts at a leaf, goes up the tree for a while, and then goes back down
to another leaf.) Be careful to note that, as illustrated in Figure 3, the
maximum-width path may not pass through the root of the tree!

Use your fold to implement a function

width :: Rose a -> Integer.

Note: this is much trickier than it may first appear. You will probably
need a helper function. Please ask for hints if you are stuck.

Read sections 1–5 of John Backus’s 1977 Turing Award lecture, The rest of this lecture has lots of cool
stuff in it too; you’re welcome to read
more if you find it interesting, although
beware that it starts getting extremely
hairy about halfway through.

Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs, available from http://worrydream.

com/refs/Backus-CanProgrammingBeLiberated.pdf.

Exercise 11 Backus delivered this lecture almost 40 years ago. In
what ways do his remarks still apply today, and in what ways are
they outdated? Give two specific examples of each.

Exercise 12 Translate the Innerproduct function, defined in section
5.2, into Haskell. (You may use the standard transpose function,
defined in the Data.List module.)

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://worrydream.com/refs/Backus-CanProgrammingBeLiberated.pdf
http://worrydream.com/refs/Backus-CanProgrammingBeLiberated.pdf
http://creativecommons.org/licenses/by/4.0/

