
CSCI 490 problem set 6
Due Tuesday, March 1
Revision 1: compiled Tuesday 23rd February, 2016 at 21:21

Rubric

For full credit, your solutions should demonstrate a proficient under-
standing of the following topics:

• Simply typed lambda calculus: 4 points

• Y combinator: 4 points

• Type inference: 4 points

• Curry-Howard isomorphism: 4 points

An extra 4 points will be awarded for completeness.

The Simply-Typed Lambda Calculus

This section provides a reference for the simply-typed λ-calculus
extended with product and sum types, as discussed in class.

Syntax

Types are denoted by the metavariables ϕ or ψ and are defined by the or occasionally χ or whatever other
lowercase Greek letter I feel like usingfollowing recursive grammar:

ϕ, ψ ::= A | ϕ→ ψ | ϕ× ψ | ϕ + ψ

That is, a type is either a base type (denoted by a capital letter like A,
B, . . .), a function type ϕ → ψ, a product type ϕ× ψ, or a sum type
ϕ + ψ.

The syntax of terms is given by

t :: = x | λx : ϕ. t | t1 t2

| (t1, t2) | fst t | snd t

| left t | right t | case t of {left x1 → t1; right x2 → t2}

Formally, this syntax requires that the argument of a λ must be an-
notated with a type (λx : ϕ. t). However, we will sometimes omit the
type annotation (λx. t), either because the type can be easily under-
stood from the context, or because it is up to you to deduce what its
type annotation should be.

csci 490 problem set 6 2

Typing

The typing rules for this version of the simply-typed λ-calculus are
shown below.

x : ϕ ∈ Γ

Γ ` x : ϕ
Var (Ax)

Γ, x : ϕ ` t : ψ

Γ ` λx : ϕ. t : ϕ→ ψ
Lam (→I)

Γ ` t1 : ϕ→ ψ Γ ` t2 : ϕ

Γ ` t1 t2 : ψ
App (→E)

Γ ` t1 : ϕ Γ ` t2 : ψ

Γ ` (t1, t2) : ϕ× ψ
Pair (×I)

Γ ` t : ϕ× ψ

Γ ` fst t : ϕ
Fst (×E1)

Γ ` t : ϕ× ψ

Γ ` snd t : ψ
Snd (×E2)

Γ ` t : ϕ

Γ ` left t : ϕ + ψ
Left (+I1)

Γ ` t : ψ

Γ ` right t : ϕ + ψ
Right (+I2)

Γ ` t : ϕ + ψ Γ, x1 : ϕ ` t1 : χ Γ, x2 : ψ ` t2 : χ

Γ ` case t of {left x1 → t1; right x2 → t2} : χ
Case (+E)

Reduction

Finally, the reduction rules are as follows:

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 6 3

(λx : ϕ. t1) t2 [x 7→ t2]t1
β

t1 t′1
t1 t2 t′1 t2

Cong-AppL
t2 t′2

t1 t2 t1 t′2
Cong-AppR

fst (t1, t2) t1
β-Fst

snd (t1, t2) t2
β-Snd

t t′

fst t fst t′
Cong-Fst

t t′

snd t snd t′
Cong-Snd

case (left t) of {left x1 → t1; right x2 → t2} [x1 7→ t]t1
β-CaseL

case (right t) of {left x1 → t1; right x2 → t2} [x2 7→ t]t2
β-CaseR

t t′

case t of {left x1 → t1; right x2 → t2} case t′ of {left x1 → t1; right x2 → t2}
Cong-Case

Exercise 1 Give a formal typing derivation (i.e. a proof tree) which
assigns a type to the following term (note there are multiple correct
answers):

λp. case (fst p) of {left x1 → right x1; right x2 → x2 (λz. z)}

Exercise 2 If Γ ` t : ϕ and t t′, will it always be the case that
Γ ` t′ : ϕ (for the same type ϕ)? Explain how you would go about
structuring a proof of this statement. Which parts are easy? Which
parts would be more difficult?

Exercise 3 Recall that in the untyped λ-calculus, we can define the Y
combinator by

Y = λ f . (λx. f (x x)) (λx. f (x x)).

Explain why it is not possible to give a type to Y in the simply-typed Hint: note that, as with anything
defined inductively/recursively, infinite
types are not allowed.

λ-calculus.

Exercise 4 Of course, just showing that Y does not have a type is
not a proof that we have ruled out infinite recursion! Maybe there is
some other tricky thing we can do that has a type but acts like Y. We

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 6 4

would like to prove that any well-typed term will only reduce for a
finite number of steps. If a term t does not reduce infinitely we say t
terminates. Otherwise we say t diverges.

One obvious approach would be to prove the following statement
by (strong1) induction on the size2 of λ-calculus terms: 1 The strong induction principle for

natural numbers says that in order to
prove that P holds for all natural num-
bers, we must prove that P holds for an
arbitrary number m under the assump-
tion that P holds for all numbers k < m.
Note this also means we must prove
P(0) without any assumptions, since
there are no k < 0. This is equivalent in
power to the usual induction principle
for natural numbers, but often “feels”
more powerful, since the inductive
hypothesis lets you assume that P holds
for all numbers smaller than m instead
of just the predecessor.
2 The size of a λ-calculus term is de-
fined as the number of constructors
it contains, i.e. each λ contributes
1 to the size, as does each applica-
tion, pair, and so on. For example,
size(λx. (fst (y, z))) = 5.

∀n ∈N.∀t.(size(t) = n) =⇒ t terminates.

Unfortunately, this does not work. Explain why not.

This turns out to actually be true, but proving it is nontrivial—
much too nontrivial to include on this homework, but not so non-
trivial that you would not be able to understand the proof. If you are
interested, you can consult Chapter 12 of Pierce3 (you are welcome to

3 Benjamin C. Pierce. Types and program-
ming languages. MIT press, 2002

borrow my copy).
Now that we have cut out unrestricted recursion, suppose we want

to add it back in, but in a principled way.4 The idea is to explicitly

4 Why would we go to all the trouble
of getting rid of recursion if we are
just going to add it back in again? Al-
though adding Y gives us unrestricted
recursion again, it’s now easy to tell just
by looking at a term whether it could
possibly be infinitely recursive: just
see whether it contains Y or not. If it
doesn’t, then it will definitely terminate.
Also, as we discussed in class, there
are many benefits to having a type sys-
tem besides just getting rid of infinite
recursion.

add a new term constructor Y to the syntax of λ-calculus terms, i.e. in
addition to λ, application, etc., a term t can now also be of the form
Y t′ for some other term t′. Note that in contrast to the Y from the
untyped λ-calculus, which we just defined to be a certain λ-calculus
term, this new Y is just a piece of syntax with no a priori meaning.

Exercise 5 Write down a typing rule for Y t, that is, a rule of the
form

. . .

Γ ` Y (t) : . . .

where you fill in the dots appropriately. (Hint: think about the type
of fix in Haskell.)

Exercise 6 Write down an appropriate reduction rule for Y .

Consider the following Haskell definitions:

data Ty where

BaseTy :: String -> Ty

Arr :: Ty -> Ty -> Ty

deriving (Eq, Show)

data Tm where

Var :: String -> Tm

Lam :: String -> Ty -> Tm -> Tm

App :: Tm -> Tm -> Tm

deriving Show

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 6 5

Ty represents types of the STLC, and Tm represents terms. I have pro-
vided you with the file STLC.hs, which contains the above definitions
along with utilities to parse and pretty-print terms and types (that is,
convert between String representations and the above algebraic data
types).

Exercise 7 Implement a function Hint: you may find the Data.Map

module useful.
inferType :: Tm -> Maybe Ty

which infers the type of a term. You can use the provided parsers
and pretty-printers to test your function. For example,

ghci> let tm = readTmU "\\y:D -> A -> B. \\z:D. \\x:(A -> B) -> ((C -> D) -> E). x (y z)"

ghci> fmap ppTy (inferType tm)

Just "(D -> A -> B) -> D -> ((A -> B) -> (C -> D) -> E) -> (C -> D) -> E"

ghci> fmap ppTy (inferType (readTmU "\\x:A. x x"))

Nothing

The Curry-Howard isomorphism

Exercise 8 Some of the following propositions are provable in
propositional logic, and some are not.

• For those that are provable, demonstrate it by giving a term of the
STLC with a corresponding type (you need not give a formal typing
derivation, though you may find it helpful to do so). Equivalently,
you may write a Haskell function with a corresponding type, as
long as you are careful not to use recursion or any other Haskell
features which are not part of STLC.

• For those that are not provable, explain why not.

(a) ϕ =⇒ ϕ

(b) (ϕ =⇒ ϕ) =⇒ ϕ

(c) ((ϕ =⇒ ϕ) =⇒ ϕ) =⇒ ϕ

(d) (ϕ ∧ (ψ ∨ χ)) =⇒ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) Déjà vu?

(e) (ϕ =⇒ (ψ ∧ χ)) =⇒ ((ϕ =⇒ ψ) ∧ (ϕ =⇒ χ))

References

Benjamin C. Pierce. Types and programming languages. MIT press,
2002.

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Rubric
	The Simply-Typed Lambda Calculus
	The Curry-Howard isomorphism

