
CSCI 490 problem set 11
Due Tuesday, April 12
Revision 1: compiled Wednesday 6th April, 2016 at 10:39

• Files you should submit: AParser.hs and SExpr.hs. You should
take the versions that I have provided and add your solutions to
them. You do not have to turn in a PDF this week.

Introduction

A parser is an algorithm which takes unstructured data as input (of-
ten a String) and produces structured data as output. For example,
when you load a Haskell file into ghci, the first thing it does is parse
your file in order to turn it from a long String into an abstract syntax
tree representing your code in a more structured form.

Concretely, we will represent a parser for a value of type a as a
function which takes a String represnting the input to be parsed,
and succeeds or fails; if it succeeds, it returns the parsed value along
with whatever part of the input it did not use.

newtype Parser a

= Parser { runParser :: String -> Maybe (a, String) }

A Parser for Things is a function from
Strings to Maybe a Pair of a Thing and a
String. http://www.willamette.edu/
~fruehr/haskell/seuss.html

For example, satisfy takes a Char predicate and constructs a
parser which succeeds only if it sees a Char that satisfies the pred-
icate (which it then returns). If it encounters a Char that does not
satisfy the predicate (or an empty input), it fails.

satisfy :: (Char -> Bool) -> Parser Char

satisfy p = Parser f

where

f [] = Nothing -- fail on an empty input

f (x:xs) -- check if x satisfies the predicate

-- if so, return x along with the remainder

-- of the input (that is, xs)

| p x = Just (x, xs)

| otherwise = Nothing -- otherwise, fail

Using satisfy, we can also define the parser char, which expects to
see exactly a given character and fails otherwise.

char :: Char -> Parser Char

char c = satisfy (== c)

For example:

http://www.willamette.edu/~fruehr/haskell/seuss.html
http://www.willamette.edu/~fruehr/haskell/seuss.html

csci 490 problem set 11 2

*Parser> runParser (satisfy isUpper) "ABC"

Just ('A',"BC")

*Parser> runParser (satisfy isUpper) "abc"

Nothing

*Parser> runParser (char 'x') "xyz"

Just ('x',"yz")

For convenience, I’ve also provided you with a parser for positive
integers:

posInt :: Parser Integer

posInt = Parser f

where

f xs

| null ns = Nothing

| otherwise = Just (read ns, rest)

where (ns, rest) = span isDigit xs

Tools for building parsers

However, implementing parsers explicitly like this is tedious and
error-prone for anything beyond the most basic primitive parsers.
The real power of this approach comes from the ability to create com-
plex parsers by combining simpler ones. And this power of combining
will be given to us by. . . you guessed it, Applicative.

Exercise 1
First, you’ll need to implement a Functor instance for Parser. Hint: You may find it useful to imple-

ment a function

first :: (a -> b) -> (a,c) -> (b,c)

or to note that such a function is al-
ready available (with an even more
general type) in the Control.Arrow

module.

Exercise 2
Now implement an Applicative instance for Parser:

• pure a represents the parser which consumes no input and suc-
cessfully returns a result of a.

• p1 <*> p2 represents the parser which first runs p1 (which will
consume some input and produce a function), then passes the
remaining input to p2 (which consumes more input and produces
some value), then returns the result of applying the function to the
value. However, if either p1 or p2 fails then the whole thing should
also fail (put another way, p1 <*> p2 only succeeds if both p1 and
p2 succeed). Hint: You should be able to make good

use of the Applicative instance for
Maybe.So what is this good for? Suppose we have a type Employee de-

fined as follows:

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 11 3

type Name = String

data Employee = Emp { name :: Name, phone :: String }

If we have a Name and a String, we can apply the Emp constructor to
them to create an Employee value. But what if we have not a Name

and a String, but a way to parse a Name and a String? Well, we can
use the Applicative instance for Parser to make an employee parser
from name and phone parsers. That is, if

parseName :: Parser Name

parsePhone :: Parser String

then

Emp <$> parseName <*> parsePhone :: Parser Employee

is a parser which first reads a name from the input, then a phone
number, and returns them combined into an Employee record. Of
course, this assumes that the name and phone number are right
next to each other in the input, with no intervening separators. We’ll
see later how to make parsers that can throw away extra stuff that
doesn’t directly correspond to information we want to parse.

Exercise 3
You can also test your Applicative instance using other simple

applications of functions to multiple parsers. You should implement
each of the following exercises using the Applicative interface to put
together simpler parsers into more complex ones. Do not implement
them using the low-level definition of a Parser! In other words, for
these exercises you should think of the Parser type as a black box—
you should not pattern-match on Parser. Pretend that you do not
have access to the Parser constructor or even know how the Parser

type is defined.
Note that you should add these functions to the module’s export

list (the list of things in parentheses right after module AParser at the
top of the file.

• Create a parser

abParser :: Parser (Char, Char)

which expects to see the characters 'a' and 'b' and returns them
as a pair. That is,

*AParser> runParser abParser "abcdef"

Just (('a','b'),"cdef")

*AParser> runParser abParser "aebcdf"

Nothing

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 11 4

• Now create a parser

abParser_ :: Parser ()

which acts in the same way as abParser but returns () instead of
the characters 'a' and 'b'.

*AParser> runParser abParser_ "abcdef"

Just ((),"cdef")

*AParser> runParser abParser_ "aebcdf"

Nothing

• Create a parser intPair which reads two integer values separated
by a space and returns the integer values in a list. You should use
the provided posInt to parse the integer values.

*Parser> runParser intPair "12 34"

Just ([12,34],"")

Exercise 4
Applicative by itself can be used to make parsers for simple,

fixed formats. But for any format involving choice (e.g. “. . . after
the colon there can be a number or a word or parentheses. . . ”)
Applicative is not quite enough. To handle choice we turn to the
Alternative class, defined (essentially) as follows:

class Applicative f => Alternative f where

empty :: f a

(<|>) :: f a -> f a -> f a

(<|>) is intended to represent choice: that is, f1 <|> f2 represents
a choice between f1 and f2. empty should be the identity element for
(<|>), and often represents failure.

Write an Alternative instance for Parser: Hint: there is already an Alternative

instance for Maybe which you may find
useful.• empty represents the parser which always fails.

• p1 <|> p2 represents the parser which first tries running p1. If
p1 succeeds then p2 is ignored and the result of p1 is returned.
Otherwise, if p1 fails, then p2 is tried instead.

Unlike the previous exercise, to implement the Alternative Parser

instance you will have to actually dig into the definition of Parser.

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 11 5

Exercise 5
Now implement a parser

intOrUppercase :: Parser ()

which parses either an integer value or an uppercase character, and
fails otherwise. Again, here you should just rely on the Applicative

and Alternative interfaces; your implementation should not rely on
the definition of Parser.

*Parser> runParser intOrUppercase "342abcd"

Just ((), "abcd")

*Parser> runParser intOrUppercase "XYZ"

Just ((), "YZ")

*Parser> runParser intOrUppercase "foo"

Nothing

Parsing S-expressions
Your solutions to this section should go
in SExpr.hs.All told, we now have the following:

• the definition of a basic Parser type

• a few primitive parsers such as satisfy, char, and posInt

• Functor, Applicative, and Alternative instances for Parser

So, what can we do with this? It may not seem like we have much to
go on, but it turns out we can actually do quite a lot.

Again, from this point on you should only need to write code
that uses interfaces provided by the Functor, Applicative, and
Alternative instances, and does not depend on the details of the
Parser implementation. In fact, AParser.hs does not export the
Parser constructor, so when using it in another module it is literally
impossible to depend on the details of its implementation.

Exercise 6
First, let’s see how to take a parser for (say) widgets and turn it

into a parser for lists of widgets. In particular, there are two functions
you should implement: zeroOrMore takes a parser as input and runs
it consecutively as many times as possible (which could be none,
if it fails right away), returning a list of the results. zeroOrMore al-
ways succeeds. oneOrMore is similar, except that it requires the input
parser to succeed at least once. If the input parser fails right away
then oneOrMore also fails.

For example, below we use zeroOrMore and oneOrMore to parse a
sequence of uppercase characters. The longest possible sequence of

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 11 6

uppercase characters is returned as a list. In this case, zeroOrMore
and oneOrMore behave identically:

*AParser> runParser (zeroOrMore (satisfy isUpper)) "ABCdEfgH"

Just ("ABC","dEfgH")

*AParser> runParser (oneOrMore (satisfy isUpper)) "ABCdEfgH"

Just ("ABC","dEfgH")

The difference between them can be seen when there is not an up-
percase character at the beginning of the input. zeroOrMore succeeds
and returns the empty list without consuming any input; oneOrMore
fails.

*AParser> runParser (zeroOrMore (satisfy isUpper)) "abcdeFGh"

Just ("","abcdeFGh")

*AParser> runParser (oneOrMore (satisfy isUpper)) "abcdeFGh"

Nothing

Implement zeroOrMore and oneOrMore with the following type
signatures: Hint: To parse one or more occurrences

of p, run p once and then parse zero or
more occurrences of p. To parse zero or
more occurrences of p, try parsing one
or more; if that fails, return the empty
list.

zeroOrMore :: Parser a -> Parser [a]

oneOrMore :: Parser a -> Parser [a]

Exercise 7
There are a few more utility parsers needed before we can accom-

plish the final parsing task. First, spaces should parse a consecutive
list of zero or more whitespace characters (use the isSpace function
from the standard Data.Char module).

spaces :: Parser String

Next, ident should parse an identifier, which for our purposes
will be an alphabetic character (use isAlpha) followed by zero or
more alphanumeric characters (use isAlphaNum). In other words, an
identifier can be any nonempty sequence of letters and digits, except
that it may not start with a digit.

ident :: Parser String

For example:

*AParser> runParser ident "foobar baz"

Just ("foobar"," baz")

*AParser> runParser ident "foo33fA"

Just ("foo33fA","")

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 11 7

*AParser> runParser ident "2bad"

Nothing

*AParser> runParser ident ""

Nothing

Exercise 8
S-expressions are a simple syntactic format for tree-structured data,

originally developed as a syntax for Lisp programs. We’ll close out
our demonstration of parser combinators by writing a simple S-
expression parser.

An identifier is represented as just a String; the format for valid
identifiers is represented by the ident parser you wrote in the previ-
ous exercise.

type Ident = String

An “atom” is either an integer value (which can be parsed with
posInt) or an identifier.

data Atom = N Integer | I Ident

deriving Show

Finally, an S-expression is either an atom, or a list of S-expressions.1 1 Actually, this is slightly different than
the usual definition of S-expressions
in Lisp, which also includes binary
“cons” cells; but it’s good enough for
our purposes.

data SExpr = A Atom

| Comb [SExpr]

deriving Show

Textually, S-expressions can optionally begin and end with any
number of spaces; after throwing away leading and trailing spaces they
consist of either an atom, or an open parenthesis followed by one or
more S-expressions followed by a close parenthesis.

atom ::= int

| ident

S ::= atom

| (S∗)

For example, the following are all valid S-expressions:

5

foo3

(bar (foo) 3 5 874)

(((lambda x (lambda y (plus x y))) 3) 5)

(lots of (spaces in) this (one))

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

csci 490 problem set 11 8

I have provided Haskell data types representing S-expressions in
SExpr.hs. Write a parser for S-expressions, that is, something of type

parseSExpr :: Parser SExpr

Hints: To parse something but ignore its output, you can use the
(*>) and (<*) operators, which have the types

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

p1 *> p2 runs p1 and p2 in sequence, but ignores the result of
p1 and just returns the result of p2. p1 <* p2 also runs p1 and p2 in
sequence, but returns the result of p1 (ignoring p2’s result) instead.

For example:

*AParser> runParser (spaces *> posInt) " 345"

Just (345,"")

© 2016 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Introduction
	Tools for building parsers
	Parsing S-expressions

