
Using lhs2TeX and sproof

January 12, 2016

This document explains how to make use of

• lhs2TeX, for typesetting Haskell code in LATEX, and

• the sproof environment, for typesetting structured proofs.

The document itself explains most of what you need to know, but for even more
insight you can take a look at the LATEX source used to create this document as
well.

1 Typesetting Haskell with lhs2TeX

lhs2TeX is a tool for nicely typesetting literate Haskell files with LATEX. In
fact—as with this very document—they do not really have to be literate Haskell
per se, but just LATEX documents with some Haskell code interspersed.

To install lhs2TeX, it should suffice to issue the command

cabal install lhs2TeX

To use it, start by creating a LATEX document within a .lhs file (if you use
emacs, you can tell it to use latex-mode instead of literate Haskell mode by
putting % -*- mode: LaTeX -*- at the top of your file). At the top of your
file, immediately following the \documentclass command, you should put

%include polycode.fmt

which will instruct lhs2TeX to import a standard library of tools and definitions.
Within your LATEX document, you can include snippets of Haskell code by

enclosing them in vertical bars. For example,

|length . map f == length|

gets typeset as length ◦ map f ≡ length. Note that there are several styles for
typeset Haskell code. The default is to use italics and nice “mathy” symbols
like ◦ in place of ., ≡ in place of ==, 6 in place of <=, and so on. This looks
nice but can sometimes be harder to read if you are not used to it. If you would
rather have good old typewriter font used for your Haskell code, you can pass
the --verb option to lhs2TeX.

You can also include larger sections of Haskell code by enclosing them in

1

\begin{code} ... \end{code}

or

\begin{spec} ... \end{spec}

(The only difference between the two is that anything in a spec environment
will be ignored when the file is loaded into ghci or compiled with ghc.) For
example,

\begin{code}

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

\end{code}

is typeset as

map :: (a → b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

To achieve the nice vertical alignment of the equals signs (or anything else),
vertically align them in the source code, taking care to leave at least two spaces
before each of the things to be aligned (note how map f (x:xs) = f x ...

actually has two spaces before the = sign).
lhs2TeX acts as a preprocessor that takes .lhs files and produces .tex files.

You can use it with a command line like

lhs2TeX myfile.lhs > myfile.tex

followed by compiling the .tex file normally (e.g. with pdflatex). Recall that
you can also pass the --verb option to lhs2TeX to use a typewriter font for
your Haskell code.

There is much, much more you can do with lhs2TeX, including automatically
typesetting variable names like x2 as x2, introducing your own custom format-
ting for certain functions or operators, and automatically evaluating Haskell
expressions via ghci and inserting their output into your document. For more
information, see http://www.andres-loeh.de/lhs2tex/. It appears there is
as of yet no manual that specifically accompanies the latest release (1.19), but
the 1.17 manual should work just fine (http://www.andres-loeh.de/lhs2tex/
Guide2-1.17.pdf).

2 Typesetting structured proofs with sproof

The first step is to download sproof.sty. You can put this file somewhere LATEX
knows to look for it, or (much simpler) just put a copy of it in the same folder as
any .tex files you want to use it with. To use it, include \usepackage{sproof}
in your document preamble.

2

Structured proofs are created with the sproof environment. Each expression
or statement is typeset with the \stmt{...} command, which automatically
places its contents in math mode. In between the expressions/statements, you
can use the \reason{...}{...} command. The first argument to \reason is a
transitive binary operator (in math mode); the second argument is a justification
(in text mode). So, for example,

\begin{sproof}

\stmt{1 + 1 + 1}

\reason{=}{arithmetic}

\stmt{1 + 2}

\reason{=}{more arithmetic}

\stmt{3}

\reason{\leq}{duh}

\stmt{5}

\end{sproof}

produces

1 + 1 + 1
= { arithmetic }

1 + 2
= { more arithmetic }

3
6 { duh }

5

As another example, consider typesetting an inductive proof of the fact that
for all lists xs and functions f , length (map f xs) = length xs. The empty
list case is simple enough; consider the case when xs is a cons, y : ys. As our
inductive hypothesis, we get to assume

length (map f ys) = length ys,

and we must show the same holds for y : ys. We reason as follows:

length (map f (y : ys))
= { defn of map }

length (f y : map f ys)
= { defn of length }

1 + length (map f ys)
= { IH }

1 + length ys
= { defn of length }

length (y : ys)

3

