
Good Haskell Style

All your submitted programming assignments should emerge creatively
from the following style guidelines. Programming is. . .

• . . . engineering : every field of engineering has a set of best practices
that help in producing high-quality designs.

• . . . communication: social conventions make it easier to communicate
by allowing others to focus on the content rather than the form of your
program.

• . . . an art form: as every artist knows, constraints serve to enhance
rather than quench creativity.

You may also refer to https://github.com/tibbe/haskell-style-guide/

blob/master/haskell-style.md which goes into much more specific detail
about best practices for formatting Haskell code.1

• DO use camelCase for function and variable names.

• DO use descriptive function names, which are as long as they need to
be but no longer than they have to be. Good: solveRemaining. Bad:
slv. Ugly: solveAllTheCasesWhichWeHaven’tYetProcessed.

• DON’T use tab characters. Haskell is layout-sensitive and tabs Mess
Everything Up. I don’t care how you feel about tabs when coding in
other languages. Just trust me on this one. Note this does not mean
you need to hit space a zillion times to indent each line; your Favorite
Editor ought to support auto-indentation using spaces instead of tabs.
That is, you can use the Tab key on your keyboard and have your
editor automatically insert space characters in your document.

• DO try to keep every line under 80 characters. This isn’t a hard and
fast rule, but code that is line-wrapped by an editor looks horrible.

1Which I mostly agree with.

https://github.com/tibbe/haskell-style-guide/blob/master/haskell-style.md
https://github.com/tibbe/haskell-style-guide/blob/master/haskell-style.md


• DO give every top-level function a type signature. Type signatures
enhance documentation, clarify thinking, and provide nesting sites for
endangered bird species. Top-level type signatures also result in better
error messages. With no type signatures, type errors tend to show up
far from where the real problem is; explicit type signatures help localize
type errors.

Locally defined functions and constants (part of a let expression or
where clause) do not need type signatures. In fact, sometimes it can
actually hurt: to use local type signatures which are polymorphic you
need to enable a certain extension and jump through some hoops (ask
for details if you are curious). If you need to add a polymorphic type
signature to a local function (e.g. to help with debugging a type error)
it’s usually a good idea to move it to the top level.

• DO precede every top-level function by a comment explaining what it
does (i.e. describe the inputs and the output).

• DO use -Wall. Either pass -Wall to ghc on the command line, or
(recommended) put

{-# OPTIONS_GHC -Wall #-}

at the top of your .hs file. All your submitted programs should compile
with no warnings.

• DO, as much as possible, break up your programs into small functions
that do one thing, and compose them to create more complex functions.

• DO try to make all your functions total. That is, they should give
sensible results (and not crash) for every input.


