
CSCI 490
Functional Programming and the Art of Recursion

Spring 2016
Lecture: TR 1:15-2:30, MC Reynolds 317
Website: http://ozark.hendrix.edu/~yorgey/490/

Instructor: Brent Yorgey, MC Reynolds 310
Office hours: any time my door is open, or make an appointment at

http://byorgey.youcanbook.me

Email: yorgey@hendrix.edu

Course Description

Functional programming takes as its central organizing principle the idea of
evaluating functions rather than executing instructions. It supports program-
ming at a high level of abstraction and careful control of side effects. This
course explores functional programming in depth, combining practical program-
ming experience in Haskell and Idris with exploration of the underlying theory.
Planned topics include algebraic data types and pattern matching, recursion
and induction, folds, lambda calculus (typed and untyped), laziness, functors,
and monads. We will also spend some time doing dependently typed functional
programming and computer-checked formal proofs in Idris, exploring the deep
connection between functional programs and formal logic.

By the end of the semester you will get this joke

1

http://ozark.hendrix.edu/~yorgey/490/
http://byorgey.youcanbook.me


Calendar

Week Month Days Topics

1 Jan 19,21 Introduction to Haskell
2 26, 28 Algebraic data types, pattern matching, logic and

proof
3 Feb 2, 4 Laziness, higher-order programming, recursion

patterns
4 9, 11 Polymorphism, type inference, folds
5 16, 18 Folds, structural induction
6 23, 25 Type classes, kinds, Functors
7 Mar 1, 3 Applicative functors
8 8, 10 Monads
9 15, 17 Untyped λ-calculus

Spring break

10 29, 31 Simply typed λ-calculus
11 Apr 5, 7 Curry-Howard isomorphism, introduction to Idris
12 12, 14 Idris
13 19, 21 Open recursion
14 26, 28 Cata- and anamorphisms, free monads

Evaluation

Evaluation will be based on

• problem sets (40%),

• presentations and participation (10%),

• quizzes (25%), and

• a final project (25%).

Problem sets

Problem sets will be assigned weekly. They will typically have both a written
component and a programming component. Let’s not beat around the bush:
they are going to be very challenging! This is where most of your learning will
take place in the course.

Problem sets will be completed in groups of 2 or 3. You may pick your own
groups (though I am happy to serve the role of matchmaker if you need help
finding a group).

Assignments must be turned in electronically via Moodle. Problem sets must
be written up as .lhs files, which are simultaneously valid Haskell source files

2



and also can be typeset via LATEX using the lhs2tex tool. You will turn in your
problem set both in .lhs and typeset PDF format.

Occasionally there may be some additional written component which you are
free to write up in some other format. Acceptable formats for such components
include

• PDF

• OpenDocument (.odt)

• plain text (.txt)

Proprietary formats such as Microsoft Word (.doc, .docx) or Apple Pages are
not acceptable. Documents submitted in such formats will receive a score of
zero.

Each student has three late days to spend throughout the semester as they
wish. Simply inform me any time prior to the due date for an assignment that
you wish to use a late day; you may then turn in the assignment up to 24 hours
late with no penalty. Multiple late days may be used on the same assignment.
There are no partial late days; turning in an assignment 2 hours late or 20 hours
late will both use 1 late day.

Partners working on an assignment together must each use a late day in order
to turn in the assignment up to 24 hours late. Late days are non-transferrable.

Presentations

Each week, several students will be randomly selected and assigned a problem
from the upcoming problem set. The selected students will be responsible to
present a solution and facilitate a class discussion of their assigned problem
when the problem set is due the following week.

Presentations will constitute 10% of the final grade, and will be graded on
preparedness, clarity, appropriate use of time, appropriate use of aids such as
chalkboard, projector, or papier-mâché models, and facilitation of discussion.

Group members of the presenter will also receive the same grade as the
presenter. The point of this is that it is the responsibility of the group to help
prepare a presentation, even though only one person will give it.

Quizzes

There will be weekly ten-minute quizzes testing you on key aspects of the pre-
vious week’s problem set.

Grading of the quizzes will be mastery-based: you can re-take a quiz as
many times as you like (though you will get a different version of the quiz each
time) until you master the material. Your final grade for the quiz will be the
maximum of the grades achieved. The first iteration of a given quiz will be
in class, in written form; subsequent iterations will use an oral format at a
mutually agreeable time.

3



Final project

At the end of the semester, you will undertake a final project, worth 25% of your
final grade, which explores a topic from the course in greater depth, or explores
a functional programming topic not covered during the course. Projects may
be completed either individually or in groups of two or three. The project topic
is open-ended. Examples of project topics include:

• Implementing some sort of substantial system in Haskell or Idris.

• Learning about, implementing, and explaining (e.g. via an expository pa-
per) some interesting functional algorithms or data structures.

• Using Idris (or some other formal theorem-proving system) to carry out
some nontrivial proof(s), such as proving the correctness of a particular al-
gorithm or data structure implementation, or proving some mathematical
theorem.

• Contributing to an open-source project written in a functional language.

More specific details about the final project will be discussed as it ap-
proaches. The scheduled final exam slot will be used for final project pre-
sentations.

Attendance and submission policies

Lecture attendance is expected, but is not a formal part of your grade. I do
appreciate you letting me know in advance when you must be absent for some
reason.

If you are absent from lecture it is your responsibility to obtain notes
from other student(s). Do not come to me and ask “what did I miss?”.1 On
the other hand, if after obtaining notes you have specific questions or confusions
regarding the topics covered, I would be happy to talk with you.

Disabilities

It is the policy of Hendrix College to accommodate students with disabilities,
pursuant to federal and state law. Students should contact Julie Brown in
the Office of Academic Success (505.2954; brownj@hendrix.edu) to begin the
accommodation process. Any student seeking accommodation in relation to a
recognized disability should inform the instructor at the beginning of the course.

1I am likely to answer that you missed the part where that is your responsibility.

4



Academic Integrity

All Hendrix students must abide by the College’s Academic Integrity Policy as
well as the College’s Computer Policy, both of which are outlined in the Student
Handbook.

For specific ways the Academic Integrity policy applies in this course, please
refer to the Computer Science Academic Integrity Policy.

The short version is that academic integrity violations such as copying code
from another student or the Internet are easy to detect, will be taken very
seriously, and carry a default recommended sanction of failure in the course.

If you have any questions about how the Academic Integrity policy applies
in a particular situation, please contact me.

Learning objectives

By the end of the course you will:

• Induction and recursion

– Become comfortable with induction as a foundational tool for math-
ematical reasoning

– Design appropriate recursive data types to model data

– Write recursive programs over recursive data types in Haskell and
Agda

– Carry out inductive proofs about recursive data types, in English and
in Agda

– Understand the relationship between folds and induction

• Type systems

– Understand the type systems of the simply typed λ-calculus, Haskell,
and Agda

– Understand and produce typing derivations for terms of the λ-calculus

– Understand the role of type systems in constraining programs

– Understand the logical interpretation of types, via the Curry-Howard
isomorphism

• λ-calculus

– Understand the historical and continuing role of the λ-calculus as a
foundational model of logic and computation

– Understand the definition, mechanics, and significance of the Y com-
binator

5

https://www.hendrix.edu/studentlife/handbook.aspx?id=67121
https://www.hendrix.edu/studentlife/handbook.aspx?id=42308
http://ozark.hendrix.edu/~yorgey/ac-integrity-policy.html


– Become comfortable with the mechanics of the λ-calculus as a model
of computation, including its reduction behavior and Church encod-
ing

• Haskell

– Write moderately sophisticated Haskell programs to solve specific
problems

– Understand algebraic data types and pattern-matching

– Design, use, and prove properties of recursion patterns such as maps,
filters, and folds

• Idris

– Write basic data type and function definitions in Idris

– Translate back and forth between logical statements expressed in
English and as Idris types

– Carry out inductive proofs in Idris

6


