
#3: To ∞. . . and beyond!1

September 19, 2008

This week, we’ll take a look at some fascinating implications of set theory
as it relates to the infinite.

1 Comparing cardinalities

Suppose someone gave you two jars full of M&M’s and asked you which onecomparing M&M

jars contained more. How would you answer them? You would probably count
the M&M’s in the first jar, then count the M&M’s in the second jar, then
compare the two numbers to see which was greater.

Problem 1. Before continuing, can you think of a different way to determine
which jar has more M&M’s? In particular, see if you can think of a method
which doesn’t involve counting anything.

This example can easily be extended to a method of comparing the cardi-comparing set

cardinalities nalities of two finite sets—just compute the cardinality of the first, compute
the cardinality of the second, and compare. For example, it’s obvious that
{1, 2, 3} has greater cardinality than {7, 9}, since the first set has cardinality
3, the second has cardinality 2, and 3 > 2. What could be simpler?

However, this method doesn’t work so well for infinite sets! For example,
how are we to compare the set of all integers with the set of all even integers?
The set of all integers has cardinality. . . infinity? And there are also infinitely
many even integers. . . and besides, infinity isn’t really a number!

Intuitively, of course, it seems like there are more integers than even integers.
After all, every even integer is also an integer, and there are some integers
which aren’t even, so the set of even integers is a proper subset of the set of
integers.

However, we have to tread carefully here. It turns out that intuition isn’t
much use when it comes to infinity!

1With apologies to Buzz Lightyear.
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2 Hotel ∞

(The original idea for Hotel ∞ is due to the German mathematician David
Hilbert (1862–1943); I have borrowed his idea and taken some artistic li-
cense.)

Once upon a time, in the beautiful land of Mathistan, there lived a certainthe Hotel

man named George Canand. George was the proprietor of a most unusual
hotel called Hotel ∞. This hotel was very posh (it had received a rating
of infinity stars for as long as anyone could remember), very expensive (for
the price of infinity dollars you could stay as long as you wanted), and very
large: in fact, there were an infinite number of rooms, numbered 1, 2, 3, and
so on. George himself lived in a special apartment numbered 0.

One Sunday night, George was getting ready to go to bed. He was infinitely
tired, since it had been an infinitely busy weekend; every single room in
the hotel was occupied, so George and his employees (an infinite number of
cooks, bellhops, and cleaning staff) had spent the whole weekend cooking
an infinite number of meals, carrying an infinite number of suitcases, and
vacuuming up an infinite amount of dust from an infinity of floors. Just as
he was about to get under the covers, he heard a knock at the hotel’s front
door, which was right next to his apartment. There were an infinite number
of staff working at the front desk, of course, but for some reason George’s
curiosity was piqued, and he decided to see who it was for himself.

When he went out into the lobby, he was surprised to see a man standingarrival of Wan

Moore there with a suitcase, dressed in sandals, shorts and a t-shirt with a picture
of some sort of strange twisted bottle thing which had no inside or outside.
The man introduced himself as Wan Moore.

“I’m here in Mathistan to attend the Infinitieth International Conference
on the Continuum, but my flight from North Logicia was delayed consider-
ably, and the trains out to the convention center are no longer running this
evening. So, I was wondering if I might stay here tonight.”

George was astonished but polite. “Didn’t you see the sign out front? All
of our rooms are occupied. I’m afraid we have no room for you here. Might
I suggest the Holiday ∈ down the street?”

“Oh, but I absolutely must stay here,” Wan insisted. “Even if what I’ve
heard is only half true, the Hotel ∞ is infinitely better than anywhere else
I could ever stay.”
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“Well, that is true,” conceded George with an infinite amount of pride. “But
you’ll simply have to come back a different night.”

“Wait,” said Wan, “I have an idea.”

After listening carefully, George agreed that it was an excellent idea, and
instructed his staff to carry it out immediately. Wan did stay in Hotel ∞
that night after all, and in the morning claimed that he slept infinitely better
than he had ever slept before.

Problem 2. What was Wan’s idea? (You may assume that George’s guests
love Hotel ∞ so much that they don’t mind being woken up in the middle
of the night, or even being asked to switch rooms, as long as they still
have a place to sleep. Sharing a hotel room with another guest, however, is
completely out of the question.)

The next day, no one checked out of the hotel (since you can stay as long asa tour group of

twenty you want, no one ever checks out). That night, however, a bus with twenty
tourists showed up. After thinking a bit, George was able to accommodate
them, too. Each one of them slept soundly in their own room of Hotel ∞.

Problem 3. What did George do this time to accommodate the new guests?

For the remainder of the week, no one new showed up (much to George’s
relief). But no one checked out, either, so all the rooms were still full. That
Friday, just as George was getting ready for bed, there came another knock
at the door. “Oh, no,” thought George, “who could it be this time?”

Much to his dismay, when he entered the (infinitely large) lobby, he foundan infinite tour

group it full of an infinite number of people! A woman approached him and in-
troduced herself as Alice Nul. “Hi, my infinite number of friends and I are
here on a sightseeing tour of Mathistan, and we were wondering if you have
room for us here. I’ve heard that this is the only place that can fit all of us,
and we’d really like to all be able to stay in the same hotel.”

“I’m really sorry, Alice, but all our rooms are full!” replied George. “I would
love for you and your friends to stay here, but there simply isn’t room.”

“Are you absolutely sure?” Alice asked. “I don’t know where else we would
go. Maybe some people have checked out that you didn’t notice? We would
really, really like to stay here.”

“I don’t know,” said George unhappily, “but I’ll check.”

Instead, George ran straight to room 21. “Wan!” he cried, knocking franti-
cally. “I need your help!”
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“What’s wrong?” Wan asked, opening the door.

George explained the situation.

“Oh. Is that all?” said Wan.

“Wan, you are a genius!” exclaimed George, after hearing Wan’s idea.

That night, Alice and all her friends enjoyed their stay in Hotel ∞, and
declared it to be chief among the wonders of Mathistan.

Problem 4. What was Wan’s idea this time?

After their tour of Mathistan, Alice and her friends returned to Wordsylvaniaan infinite number

of infinite tour

groups

and spread the word about Hotel ∞. Their glowing review spread so far and
fast that the next weekend, an infinite number of tour buses, each filled with
an infinite number of people, all showed up at Hotel ∞ at once! By now,
however, Wan Moore had accepted George’s offer of employment as general
manager of the hotel (for a salary of $2∞), and easily accommodated all the
tourists. George didn’t even wake up.

Problem 5. How did Wan do it!?

3 By jection!

By now, you should be thoroughly convinced that infinity is really strange.infinity is strange

Don’t worry, though. It gets even stranger!

But first, let’s go back to M&M’s. Here’s another way to compare thematching M&M’s

two jars to see which has more. Is this the method you came up with in
Problem 1?

1. Take out two M&M’s, one from each jar.

2. Eat them.2

3. If one of the jars is now empty, it had fewer M&M’s to begin with than
the other jar. Otherwise, return to step 1.

2Feeding them to your pet mmweasel is also an option. If you’ve never heard of

mmweasels, they are a certain type of weasel, found mostly in North America and parts

of Iceland, which eat only M&M’s.
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Do you see how this works? The interesting thing about this method is
that it doesn’t involve any counting ! In other words, we can compare the
cardinality of two sets without actually counting anything, just by matching
up their elements.

That phrase “matching up their elements” ought to ring a bell—of course,
a bijection is a function which does just that! So, we can define equality of
cardinalities in terms of bijections:

equality of set

cardinality Two sets S and T have the same cardinality if there exists
a bijection f : S → T .

Since this doesn’t involve any counting, it works just as well for infinite sets
as for finite ones. In order to prove that two sets S and T have the same
cardinality, you just have to specify some function f : S → T , and show
that f is a bijection (by showing that it is both injective and surjective).

As an example, let’s show that the sets N (the natural numbers 0, 1, 2, 3 . . . )|N| = |W|

and N\{0} (the whole numbers 1, 2, 3, . . . ) have the same cardinality. This
might seem strange—after all, N has an element that N \ {0} doesn’t—but
it’s true!

As an abbreviation, let’s write W in place of N \ {0}. Now consider the
function f : N → W defined as f(n) = n + 1. I claim that f is a bijection.

First, we need to show that f is injective. (Remember, to show that a
function f is injective, we must show that if f(x) = f(y), then x = y, for
any x and y in the domain of f .) Suppose x, y ∈ N, and f(x) = f(y). By
the definition of f , this means that x + 1 = y + 1. But now we can just
subtract 1 from both sides to get x = y. Therefore f is injective.

Now we will show that f is a surjection (by showing that for every element y

of its codomain, there is some corresponding element of the domain which f

maps to y). Suppose y ∈ W. Then I claim that y− 1 ∈ N, and f(y− 1) = y.
If y ∈ W then y ≥ 1, which means that y − 1 ≥ 0, proving that y − 1 ∈ N.
It is also obvious that f(y − 1) = y. Therefore, f is surjective.

Since f is both injective and surjective, it is a bijection, and |N| = |W|!

Problem 6. What does this have to do with Hotel ∞?

Problem 7. Prove that the set of integers (Z) and the set of even integers
(often written 2Z) have the same cardinality.
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Strange, isn’t it!? For finite sets S and T , if S ⊂ T then we know that
|S| < |T |. (S ⊂ T , pronounced “S is a proper subset of T ,” means that
S ⊆ T and S 6= T ; that is, every element of S is an element of T , and

there are some elements of T which are not elements of S.) For example,
{3, 4, 5} ⊂ {2, 3, 4, 5}, and clearly the cardinality of {3, 4, 5} (namely, 3)
is smaller than the cardinality of {2, 3, 4, 5} (namely, 4). But this isn’t
necessarily true for infinite sets! As you have just proved, it is quite possible
to have two infinite sets where one is a proper subset of the other, and yet
they have the same cardinality.

Problem 8. Prove that |N| = |Z|.

4 Cantor’s discoveries

Most of the ideas in this week’s assignment are due to the German mathe-Georg Cantor

matician Georg Cantor (1845-1918). He created set theory, and was one of
the first people to realize the importance of talking about bijections (one-
to-one correspondences) between sets. His ideas about infinity were quite
controversial while he was alive (many people objected to them on philosoph-
ical and religious grounds in addition to mathematical ones!), but have since
become widely accepted, mainly due to the numerous connections that have
been discovered between his ideas and a wide range of other areas of math-
ematics. If you’re interested in learning more about Cantor, the Wikipedia
article on his life and work makes for an interesting read.

For the remainder of the assignment, we’ll explore just a few of the surprising
discoveries he made.

4.1 N × N and Q

The first surprising application of Cantor’s new framework of one-to-one
correspondence between sets was in proving that N (the set of natural or
counting numbers, 0, 1, 2, 3, . . . ) has the same cardinality as N × N (the
set of all pairs of natural numbers).

Problem 9. Explain how N×N is like the infinite number of tour buses of
infinite tour groups who descended on Hotel ∞ at the end of the story in
section 2.

There are actually lots of different bijections between N and N × N. If|N| = |N × N|
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you want to see one of them, you can read about it here: http://www.

mathlesstraveled.com/?p=94. The basic idea is to lay out all the elements
of N × N in a grid, and list them “by diagonals”: (0, 0), (1, 0), (0, 1), (2, 0),
(1, 1), (0, 2), (3, 0) . . . (incidentally, if you haven’t solved Problem 5 yet,
consider this a hint!). As I talk about in that blog post, this actually shows
that the cardinality of Q (the rational numbers) is also the same as N.

4.2 R

Every set that is either finite or has the same cardinality as N is called
countable. At this point it would be easy to assume that, in fact, all infinite
sets are countable. The amazing thing is that if you assumed that, you
would be wrong!

Cantor’s most surprising discovery, and the one thing which upset his critics
the most, was his discovery that the set of real numbers R actually has
a different cardinality than the set of natural numbers N. They are both
infinite sets, but there is an important and specific sense in which R is more

infinite than N!

Not only that, but he also showed that the cardinality of the P(S), the set
of all subsets of S, is always greater than the cardinality of S. This means
that there is actually an infinite hierarchy of infinities, each more infinite
than the last! Don’t hurt your brain.

Let’s see how Cantor proved that the cardinality of R is greater than that|R| 6= |N|

of N. To prove that two sets have the same cardinality, we have to show a
bijection between them; so, to show that two sets have different cardinalities,
we must show that no bijection between them can possibly exist.

What Cantor actually proved is that the cardinality of [0, 1] is greater than
that of N; if that is true, than the cardinality of all of R (of which [0, 1] is a
subset) must be greater than N as well.

Let’s start by assuming that there is some one-to-one correspondence be-
tween N and [0, 1]. That means we can make a list of all the real numbers
in [0, 1], with each one labeled by a natural number. (That is, every real
number in [0, 1] can have its own room in Hotel ∞.) Like this:
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r0 = 0 . 1 0 1 0 1 0 1 0 1 0 . . .

r1 = 0 . 3 1 4 1 5 9 2 6 5 3 . . .

r2 = 0 . 4 9 0 0 0 0 0 0 0 0 . . .

r3 = 0 . 7 7 7 7 7 6 7 7 7 7 . . .

r4 = 0 . 1 2 3 4 5 6 7 8 9 0 . . .

r5 = 0 . 4 7 5 8 9 2 2 3 6 4 . . .

r6 = 0 . 4 8 4 8 4 9 4 9 4 5 . . .
...

This list could be arranged any way we like, but if there is a bijection
between N and [0, 1], then we would be able to make such a list. Note, of
course, that the list goes on forever (there is an rn for every n ∈ N), and
each number in the list extends on forever to the right. This is just a small
part of the list we’re seeing.

Now, do you see how the digits on a diagonal line are in bold? Let’s takeCantor’s diagonal

argument those digits and use them to make another number:

q = 0.1107524 . . .

In other words, q has one digit taken from each number in the list, each in
a different place.

Problem 10. Now, write down another number q′ by changing each digit
of q into a different digit.

Problem 11. Explain why we know that q′ is not equal to r0.

Problem 12. Explain why we know that q′ is not equal to any of the
numbers rn in our list.

But. . . that means q′ is a real number in the interval [0, 1] which isn’t in

our list—and our list was supposed to contain all such numbers! The only
possible conclusion is that it is impossible to make such a list, that is, there
does not exist a bijection between N and [0, 1]. The real numbers are simply
too infinite to fit in a list! This also means, as promised, that there are
different kinds of infinity, some more infinitely infinite than others. Feel free
to have fun proving this to your friends and watching their brains explode.

8 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.


