
#6: Interlude: Logic Circuits
October 10, 2008

In the previous assignment, I mentioned how Boolean logic is the foundation
of modern digital computers. This week, we’ll explore what that actually
means.

One of the central insights which makes digital computers possible is that
it is possible to represent any information you want using only two different
symbols—usually referred to as 0 and 1, or F and T . (Sound familiar?) In
a computer, these are physically represented by voltages (you can think of
voltage in a wire as the electrical equivalent of pressure, like air pressure or
water pressure in a hose). A zero is represented by a voltage of 0V, and a one
is represented by some positive voltage (generally around 1.5V nowadays,
although it has been getting smaller over time). First we’ll talk about how
to use these zeros and ones to represent informaion, and then we’ll explore
how a computer actually computes things with them!

1 Binary numbers

So, how is it possible to represent any information you want (such as thisencoding

information document, a recording of Miles Davis’s “So What”, or that picture of your
family at the beach where your little sister isn’t looking at the camera and
your uncle has his finger up his nose) using only ones and zeros, that is,
“true” and “false”? It’s obvious that you can’t represent any information at
all with only one symbol—if all you had was zeros, the only thing you could
do would be to write down “0000000000000000. . . ”—but it seems incredible
that by adding just one more symbol, we can now encode anything we want!
Adding a third, fourth, or fifth symbol doesn’t give us any extra power.

The key is that we can encode any integer we want using only ones andbinary

zeros, by writing it in base two, also known as binary. For this reason, a
single zero or one is also called a binary digit, or bit. Once we can encode
any integer we like, it’s not hard to see how to make the jump to encoding
images or text files or any other sort of information; we just have to agree
on a way to represent the information using numbers.

As you probably recall from elementary school, the system we normally use
for writing numbers is base 10, which means that the places in a number are

1 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



given values based on successive powers of ten. For example, the number
“452” has a 2 in the ones (100) place, a 5 in the tens (101) place, and a 4 in
the hundreds (102) place, so it represents the number 4×102+5×101+2×100.
The fact that we use a base 10 system also means that we use ten symbols
to write numbers: 0, 1, 2, . . . , 9.

Likewise, a base two system uses only two symbols (0 and 1, of course) and
determines place values based on powers of 2 rather than powers of 10. For
example, the number 11012 (the subscript 2 indicates that it is the number
“one one zero one” in base two, rather than one thousand one hundred one)
represents 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 8 + 4 + 1 = 1310.

Problem 1. What base ten number does 10011010112 represent?

Problem 2. Write 69810 in binary.

Problem 3. Compute each of the following. Write your answers in binary.

(a) 02 + 02

(b) 02 + 12

(c) 12 + 02

(d) 12 + 12

(e) 12 + 12 + 12

Remember how in elementary school you had to memorize all the “additionbinary addition

facts” (like 3 + 5 = 8 or 9 + 7 = 16), and once you had memorized those
you could use them to do addition of bigger numbers place-by-place? (For
example, if there is a 3 on top of a 5, write “8” underneath; if there is a 9
on top of a 7, write “6” underneath and carry a 1, and so on.) Well, after
doing Problem 3, you now know all your binary addition facts! You can now
add longer binary numbers in just the same way that you can add longer
numbers in base ten.

Problem 4. Add:
10110012

+ 1111002

Problem 5. Multiply:
100102

× 112

2 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



2 Logic gates

So, now we see how computers can represent data using only ones and
zeros. But there’s still something missing. How do computers actually
compute things with ones and zeros? After all, if computers were only good
at storing data, they would be called “storers,” not “computers.”

The answer is that computers are built out of primitive physical compo-computing with logic

gates nents called logic gates which can perform logical operations on the one/zero
(true/false) values which are represented as voltages. I won’t go into the
details of how they actually work—you can look up “logic gates” and “tran-
sistors” if you want to read about it. But for now, you can just take my
word for it—there are particular configurations of silicon and metal which
can transform voltages in a way that implements logical operations.

So, what are some of these logical operations which can be performed? We’ll
look at four (although there are others as well)—AND, OR, NOT, and XOR.
Sound familiar?

Figure 1 shows the symbol we use to draw an AND gate. An AND gate takesAND gate

two voltages as input, and makes its output 1 (high voltage) if both its inputs
are 1, and zero (low voltage) otherwise. This should not be surprising—it’s
exactly the A ∧ B operation that you learned about in a previous week!

In2

In1
Out

Figure 1: An AND gate

Figure 2 shows the symbol used for an OR gate, which implements A ∨ B.OR gate

Its output is 0 if both its inputs are 0, and 1 otherwise.

Out
In2

In1

Figure 2: An OR gate

Figure 3 and Figure 4 show the symbols used for NOT and XOR gates,NOT and XOR

gates respectively. A NOT gate simply inverts its input, like ¬. An XOR gate
implements the “exclusive or” operation A ⊕ B—its output is 1 if exactly

3 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



one of its inputs is 1, and 0 if the inputs are both 0 or both 1. In other
words, it implements “not equal to.”

OutIn

Figure 3: A NOT gate (inverter)

Out
In2

In1

Figure 4: An XOR gate

3 Logic circuits

The cool thing is that these gates can be wired together to form circuitscircuits

which compute useful things. Figure 5 shows a simple example.

B

A

X

C

Figure 5: An example circuit

A and B are inputs to an AND gate. The output of the AND gate is an
input to an OR gate, along with another input C. Finally, the output of the
OR gate is an input to a NOT gate, and the output of the NOT gate is the
output of the entire circuit.

Problem 6. Write down an equation defining X in terms of A, B, and C.

Figure 6 shows another example circuit. By the way, wires only connect atMystery circuit 1

a dot; if two wires cross each other without a fat dot at their intersection (as
happens in one place in Figure 6, for example), you should assume that they
are not connected and have no effect on each other. (On a physical computer
chip, there are several different “layers” for wires to travel through, so you
can imagine the wires passing over or under each other in different layers.)

4 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



D

C

B

A

Figure 6: Mystery circuit #1

Problem 7. Fill in the following table showing the operation of the circuit
in Figure 6. That is, make a row for each of the possible values of inputs A

and B, and show what outputs C and D the circuit computes.

A B C D

Problem 8. Can you describe in words what the circuit in Figure 6 does?
(Hint : look at Problem 3.)

Problem 9. Figure 7 shows another circuit. You might notice that it con-
tains two copies of mystery circuit #1, and an extra OR gate. Make a table,
like the one you made for mystery circuit #1, showing the operation of this
circuit. (Hint: the table should have five columns and eight rows.)

Problem 10. Can you describe in words what mystery circuit #2 does?

B

A

C

S1

S0

Figure 7: Mystery circuit #2

We’d like to be able to use multiple copies of mystery circuit #2 in biggerencapsulating

circuits

5 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



circuits, but drawing out all the individual gates would get tedious, not to
mention that it would clutter the diagram and make it hard to understand
at a high level. So we can imagine putting a box around the circuit, as
shown in Figure 8. Now that we know what mystery circuit #2 does, we
can forget about its internal details and just think of it as a “black box”
which takes some inputs and somehow computes some outputs. With this
perspective, we can use Figure 9 as an abbreviation for the entire circuit.
The “M2” in the center stands for “Mystery circuit 2.” Figures 8 and 9
show exactly the same circuit, but with different levels of detail.

B

A

C

S1

S0

Figure 8: Encapsulating mystery circuit #2

C

B

A

M2
S1

S0

Figure 9: Mystery circuit #2 as a “black box”

Now that we have a compact symbol for mystery circuit #2, we can use itMystery circuit 3

to draw larger circuit diagrams. Figure 10 shows such a circuit.

Problem 11. In words, what does the circuit in Figure 10 do? (Hint : look
at Problem 4.)

You may be interested to know that there is a circuit very much like mystery
circuit #3 in your computer! It is probably much bigger (featuring perhaps
32 or 64 copies of M2) and much more complicated (in order to make it
faster), but the basic idea is still the same.

6 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



S1 S0

A B C

S1 S0

A B C

S1 S0

A B C

S1 S0

A B C

0

Z3 Z2 Z1 Z0

Y0X0X1 Y1Y2X2Y3X3

M2 M2 M2 M2

Figure 10: Mystery circuit #3

One final circuit for you to consider: Figure 11 shows a circuit known as anSR-latch

“SR-latch”. As you may notice, the strange thing about this circuit is that
it takes some of its own outputs as inputs!

S

R
Q

Q

Figure 11: An SR-latch

Feeding the output of a circuit back into itself as input could cause one offeedback

several things to happen. First, it could cause an inconsistent or oscillatory
state, where the voltages in the circuit switch back and forth very rapidly
between 0 and 1. For example, Figure 12 shows such a circuit: if a 1 is
fed into the NOT gate, it outputs a 0, which becomes the new input to the
NOT gate, so it outputs a 1, so it outputs a 0, so it outputs a 1. . . and so
on, billions of times per second! Circuits like this are not very useful.

However, sometimes feedback can be useful, and can lead to a consistent,
non-oscillating state where the feedback from the output reinforces the in-
put.

7 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



Figure 12: An oscillatory feedback loop

Problem 12. Suppose the SR-latch circuit shown in Figure 11 starts out
with R = S = Q = 0 and Q = 1. Is the whole circuit in a consistent state,
or will some of the wires oscillate between 0 and 1? Justify your answer.

Problem 13. Now suppose that S changes to 1. What happens to Q and
Q?

Problem 14. Now suppose that after being set to 1, S returns to being 0
again. Now what happens to Q and Q? (Think carefully about this one!)

Problem 15. What would happen now if R was set to 1?

Problem 16. Why do you think Q and Q are called Q and Q instead of,
say, Q and P?

Problem 17. What could you use an SR-latch for in a computer?

8 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.


