
#17: The Polar Form of Complex
Numbers
January 30, 2009

Now that you have a foundation in the basics of complex numbers, this
week, as promised, we’re going to explore the extremely fascinating polar
representation of complex numbers.

But first, a digression. . .

1 The number line

“The number line?” I hear you exclaim. “That’s, like, SO first grade. Why
are we learning about the number line?” Well, bear with me for a minute. . .

As you no doubt learned in first grade (with successive refinements to includethe number line

negative numbers, and then fractions, and then real numbers), we can think
of the real numbers as inhabiting a one-dimensional space called the number
line. Figure 1 illustrates the set of integers Z located at discrete points on
a number line; the real numbers, of course, inhabit the entirety of the line.

0 1 2 3 4 5 . . .−1−2−3−4−5. . .

Z

Figure 1: The number line

So, why is this useful or interesting? The key point is that simple arithmeticarithmetic as

geometry operations on the real numbers have simple geometric interpretations on the
number line.

For example, as illustrated in Figure 2, addition corresponds to translation.addition is

translation If you start with some number n, adding four to it corresponds to moving
four units right along the number line. Likewise, subtracting four (that is,
adding negative four) corresponds to moving four units left.

Multiplication by a positive number corresponds to scaling ; multiplicationmultiplication is

scaling/reflection by a negative number also corresponds to reflection.
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Figure 2: Real addition corresponds to translation on the number line

Problem 1. Draw pictures (something like Figure 2) that illustrate the
scaling and reflection properties of multiplication on the number line. You
can submit these pictures in one of two ways:

1. If you draw them using some sort of computer program, you can email
them along with your assignment.

2. If you draw them on paper, you can mail them to me. (In this case,
just mail them by the due date for your assignment; it doesn’t matter
when they reach me.)

What about complex numbers? Can we come up with a spatial model
for the complex numbers, where complex arithmetic has a nice geometric
interpretation?

2 The complex plane

Just as we can picture the integers or real numbers as being located on a one-the complex plane

dimensional structure, the number line or real number line, we can picture
the complex numbers in the two-dimensional complex plane, as shown in
Figure 3.

The real numbers are located along the horizontal axis (marked R in thereal and imaginary

axes picture above1), and the imaginary numbers are located along the vertical
axis (marked I). So instead of the x-axis or y-axis we talk about the real
axis and the imaginary axis. Zero, which is of course both a real number
and an imaginary number, is at the origin, the intersection of the real and
imaginary axes. So, for example, the complex number 3+2i is located three
units right and two units up from the origin, exactly where (3, 2) would be
located if we were talking about the Cartesian plane. (In some sense, we are
talking about the Cartesian plane.)

So, this seems rather natural, but it would be really nice if complex arith-complex arithmetic

as geometry?
1It really should be marked R instead of R, but. . . well, it’s a long story.
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Figure 3: The complex plane

metic operations had geometric interpretations in the complex plane, just
as real arithmetic has geometric interpretations on the number line.

Well, for addition, it turns out that this isn’t too hard:

Problem 2. What is a geometric interpretation of complex addition? In
other words, if you start at some point in the complex plane and add a+ bi,
where do you end up?

However, multiplication is not as obvious!

Problem 3. Get out a piece of graph paper and plot each of the following
points in the compex plane (you may want to use a different graph for each
subproblem, so you can see what’s going on).

(a) i, i2, i3, i4

(b) 3 + 2i, −2 + 1, and (3 + 2i)(−2 + i)

(c) 4i, −1/2, (−1/2) · 4i

Problem 4. Before you read on, write down some of your observations or
guesses about what multiplication does geometrically in the complex plane.

To really see what is going on with multiplication, we’ll have to talk about. . .
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3 Complex numbers in polar form

Now that we are thinking of complex numbers as occupying points on acomplex numbers

using polar

coordinates

plane, an idea naturally suggests itself: what would happen if we thought
of complex numbers in terms of polar coordinates, instead of Cartesian co-
ordinates?

Figure 4: Representing complex numbers in polar coordinates

Problem 5. Consider Figure 4. It shows some complex number z in the
complex plane, with its distance r and angle θ from the origin labeled. Write
z in Cartesian (a + bi) form, in terms of r and θ.

And now for a Really Amazing Fact: it turns out thata Really Amazing

Fact
eiθ = cos θ + i sin θ. (1)

Now, you might very well ask whether I am pulling your leg. What does ithuh?

even mean to raise e to the power of an imaginary number!? Unfortunately,
there isn’t room on this assignment to explain—and even if there were, every
way I know how to explain it requires calculus! But you can take my word
for it that if you think about what raising e to an imaginary power could
possibly mean, there is only one possible definition that works out correctly
with everything else we already know about e, exponentiation, imaginary
numbers, sine, cosine, and so on—and that definition is equation (1)! Hope-
fully you can see how surprising and beautiful this equation is. Why should
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cosine and sine show up if you raise e to an imaginary power? Before seeing
this equation, you would have no reason to suspect that e, cosine, and sine
even have anything at all to do with one another.

Problem 6. Substitute θ = π into equation (1), and simplify using youra beautiful equation

knowledge of sine and cosine. Now add one to both sides, and write down
the equation you get. This is called Euler’s identity. Why do you think this
is considered one of the most beautiful equations in all mathematics?

Problem 7. Use equation (1) to rewrite your answer to Problem 5 in termsthe polar form of a

complex number of r, θ, i, and e.

Your answer to Problem 7 is the polar form of a complex number. Although
it’s difficult to add two complex numbers in polar form (it would easier to just
convert them to Cartesian form first), the polar form makes multiplication
very easy!

Problem 8. Using the polar form you found in Problem 7, show that if onemultiplication of

polar forms complex number is r1 units away from the origin at angle θ1, and another
complex number is r2 units away from the origin at angle θ2, then their
product is r1r2 units away from the origin at an angle θ1 + θ2.

This, then, is the answer: in the complex plane, multiplication correspondscomplex

multiplication is

rotation!

not just to scaling (like it did on the number line) but also to rotation!
For example, multiplying by i corresponds to a counterclockwise rotation
of π/2 (90◦) in the complex plane. And multiplying by 2eiπ/4 =

√

2 + i
√

2
corresponds to a rotation by π/4 and scaling by 2—that is, any complex
number, when multiplied by

√

2 + i
√

2, will end up rotated by an angle of
π/4, and twice as far away from the origin.

Problem 9. Plot 1 + i, (1 + i)
(√

2 + i
√

2
)

, (1 + i)
(√

2 + i
√

2
)2

, and (1 +

i)
(√

2 + i
√

2
)3

on your graph paper. What happens?

4 Beyond 2D?

You might well ask whether there are any sorts of numbers which can bequaternions!

envisioned as inhabiting some sort of space with a dimension higher than
two. And the answer is. . . yes! There are four-dimensional numbers called
quaternions. The quaternions still have an imaginary number i with i2 = −1;
but they have two additional imaginary numbers, called j and k. j2 and k2
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are both equal to −1, just like i2; additionally, ijk = −1. Just as complex
numbers can be written in the form a + bi, where a and b are real numbers,
quaternions can be written in the form a + bi + cj + dk, where a, b, c, and
d are all real numbers.

Interestingly, just as we lose a nice property when generalizing from the real
numbers to the complex numbers (the fact that the real numbers are in a
certain order, so we can talk about real numbers being less than or greater
than other real numbers), we lose another property when generalizing to
the quaternions: quaternion multiplication is not communitive, that is, if
x and y are quaternions, it is not necessarily true that xy = yx (this is
true for complex numbers). Quaternions can represent rotations in three
dimensions, so they are sometimes used in computer graphics, as well as in
other applications.

There are also eight-dimensional octonions (octonion multiplication is not
even associative), and sixteen-dimensional sedenions, but by that point so
many nice properties have been lost that it’s not even clear whether these
things should be called “numbers” anymore!
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