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Suppose n is an integer, and consider this simple rule: if n is even, divide
it by two; otherwise, multiply n by 3, and add one. Pretty simple, right?
Let’s call it Rule H. Written formally,

Hn) = {Zi 1

if n is even,
otherwise.

Problem 1. What do you get when you apply Rule H to each of the
following integers?

Not all that exciting, huh? Well, consider applying Rule H repeatedly,
instead of just once (this is called iterating the rule). For example, if we
start with 10, applying the rule once gives 5; applying it again to 5 gives 16,
applying it to 16 gives. ..and so on.

Problem 2. Continue iterating Rule H starting with 10. What happens?

Problem 3. What happens when you iterate Rule H starting from each of
the following integers?
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the Collatz

conjecture

(e) 15

(f) 27 (Hint: this one is mean of me, you don’t have to do the whole
thing. What do you think will happen?)

As you can see, iterating H leads to some rather unpredictable, crazy behav-
ior! It seems like (most? all?) numbers eventually reach 1 if you iterate H,
but some might take a long time to get there. Will every starting number
eventually reach 1 if you iterate H? Well...no one knows!! Most mathe-
maticians think they will—this is called the Collatz conjecture, named after
the German mathematician Lothar Collatz—but no one has been able to
prove it. (But no one has been able to find a counterexample, either.)

1 Sequences

A list of numbers in a particular order is called a sequence. For example,
iterating Rule H starting from 11 yields the sequence

11,34, 17,52, 26, 13,40, 20, 10,5, 16,8,4,2,1,4, . ..

When we talk about sequences, we usually mean ones that follow particular
patterns, although a list of random numbers still technically counts as a
sequence.

The numbers in a sequence are called terms, and we often use subscript
notation to refer to the terms in a sequence: for example, if ¢ is a sequence,
then ¢ is the first term in the sequence, t5 is the second term, and so on.

It can be fun to try to guess the pattern behind a sequence. Did you think
that computers are far better than humans at anything having to do with
math? Think again! Human brains are incredible pattern-recognizing ma-
chines.! Computers are great at doing tedious, repetitive calculations with-
out getting tired or making mistakes, but they’re only good at following
instructions; it’s very difficult to reduce pattern recognition to a set of in-
structions.?

n fact, they’re so amazing that they tend to notice patterns in places where there
actually aren’t any. This is why people say that clouds look like llamas (or whatever),
and why, if you stare at static on a TV screen long enough, you will start to see lines and
shapes emerging from the chaos, and why people claim to see pictures of the Virgin Mary
in half-eaten grilled cheese sandwiches.

2This is actually an active area of ongoing research in artificial intelligence.
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recursive definitions

Problem 4. Put your pattern-recognizing machinery to work! Find the
pattern or rule behind each sequence and write down the next term of each.

a) 1,3,5,7,9,11, ...
b) 3,1,4,1,5,9,2, ...

) 1,3,7, 15,31, 63, ...

d) 1,2, 4,8, 16, 14, 10, ...

) 1,4,3,7,5,10,7, ...
f) 2,6, 30, 210, ...
g) 1,3,4,7, 11, 18, 29, ...

)
h) 10,4, 6, -2, 8, ...

(
(
(
(
(
(
(
(
(i) 3,4,7, 12,19, 28, ...
(

j) 2,9, 64, 625, ...

2 Recursive and explicit definitions

The most natural and fundamental way to define a sequence is with a re-
cursive definition (also known as a recurrence relation), which uses previous
terms to calculate new ones. For example,

th, =2-t,_1+1

is a recursive definition which says that the nth term is one more than
twice the (n — 1)st term. We also need some sort of base case that tells
us where to start—one or more terms must be defined without reference to
previous terms. In this case, we might say t; = 1. So we know to start with
1, which means the next term is 2 -1 + 1 = 3, and the next after that is
2:34+1 =7, then 15, and so on. You may notice that the all of the “hailstone
sequences” from Problems 2-3 are defined recursively: for example, t; = 10
and t, = H(tp—1).
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explicit definitions

Problem 5. Consider the sequence recursively defined by
t1 =1
tn = (tn-1)? + 1.

What is 5 (the fifth term in the sequence)?

Problem 6. Consider the following recursive definition:

t1 =4
t, = 5tp_o+3

What is t57 How about 47 What’s the problem? How would you fix it?

Another way to define a sequence is with an explicit definition, which de-
scribes how to calculate any term using only its position in the sequence
(often denoted n). For example, we might have s,, = 2" — 1. This explicit
formula says that to get the nth term in the sequence s, raise 2 to the power
of n and then subtract one. So, ifnis 1,2, 3,4, ... weget 1,3, 7, 15, ...
and so on.

Problem 7. As you may have already guessed, the two definitions used as
examples above actually define the same sequence:

sp,=2"—-1
and
t1 =1
th=2t,1+1
both define the sequence 1, 3, 7, 15, 31, ..., which you met in Problem 4.

(a) Calculate the twentieth term in the sequence. Which definition did
you use?

(b) 72057594037927935 is a term in the sequence. Calculate the terms
immediately following and preceding it. Which definition did you use?

Problem 8. Let’s prove that the sequences s and ¢ in Problem 7 are actually
the same (I said they were the same, but you shouldn’t just take my word
for it!).
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We can prove that they are the same by induction: if we can prove that
t1 = s1, and that whenever t;_1 = s;_1 then t; = s; as well, then we have
proved that t, must be equal to s, for all values of n (Since t; = s1, we
know that to = s9; which means that t3 = s3; which means that t4 = sy4;
which means. .. ). It’s like knocking over dominoes, math-style.

(a) Show that t; = s;.

(b) Assume that tp_1 = sg_1, and show that ¢, = si. (Hint: start
with the definition of ¢, then substitute using the assumption, and
then simplify. . .)

3 Some special sequences

3.1 Arithmetic sequences

Any sequence with the following recursive definition is called an arithmetic?
sequence:

tl =a

tn =th-1+ d
a and d can be any real numbers; a is the initial term and d is the common
difference.

(1)

Problem 9. Explain, in your own words, what an arithmetic sequence is,
and give an example. Why is d called the common difference?

Problem 10. What sequence is obtained when a = 7 and d = —27 Write
the first seven terms.

Problem 11. Is 5, 5, 5, 5, ... an arithmetic sequence? Give values for a
and d, or explain why it is not arithmetic.

Problem 12. Is 1, 4, 9, 16, ... an arithmetic sequence? Give values for a
and d, or explain why it is not arithmetic.

Problem 13. Consider the arithmetic sequence with first term a = 4 and
common difference d = 9. Find to, t5, and t193.

3For some odd reason, the noun arithmetic (the subject you studied in elementary
school) is pronounced uh-RITH-meh-tic, but the adjective arithmetic (the type of se-
quence) is pronounced AIR-ith-MEH-tic. Go figure.

9  (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



Problem 14. Come up with an explicit definition for the nth term of an
arithmetic sequence with initial term a and common difference d.

3.2 Geometric sequences

Any sequence with the following recursive definition is called a geometric
sequence:
tl =a

(2)

tn =T 'tn,1

a is the initial term and r is the common ratio.

Problem 15. Explain in your own words what a geometric sequence is, and
give an example. Why is r called the common ratio?

Problem 16. What sequence is obtained when a = 16 and r = 3/2? Write
the first seven terms.

Problem 17. Consider the geometric sequence with first term ¢ = 5 and
common ratio r = 2. Find t9 and t15.

3.3 The Fibonacci sequence

Consider the sequence defined recursively as follows:

Fp,=0
=1
F,=F,_ 1+ F,_o when n > 2.

This is known as the Fibonacci sequence; it is one of the most famous se-
quences in all of mathematics. (Note that the recursive definition for the
Fibonacci numbers specifies two base cases, since in the general case each
term is defined as the sum of the two previous terms; you learned why this
is necessary in Problem 6.)

Problem 18. Compute the first fifteen terms of the Fibonacci sequence,
beginning with Fj.

Problem 19. Add up the first two terms of the Fibonacci sequence, then
add up the first three terms, then the first four, then five, and so on. What
do you notice? (Hint: try adding one to each of the sums...)
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Problem 20. Visit the On-Line Encyclopedia of Integer Sequences (just
Google the name, you'll find it). This is one of my favorite websites; it
has more information than you could ever want to know on more integer
sequences than you could ever imagine.

(a) Search for the Fibonacci sequence by typing the first seven or so
terms into the search box. A page should come up with a ton of infor-
mation about the Fibonacci sequence. You probably won’t understand
all of it, but that’s OK; I don’t either. Find something interesting that
you do understand and write about it.

(b) Now go to the very bottom of the page and click on “WebCam”.
Change “reload every 20 seconds” to “when I say so”. Now click
on “Next sequence” until you find an interesting sequence that you
understand (note: even if you don’t understand all the words in the
main definition of the sequence, there are often further explanation
and examples further down on the page). There may be quite a few
that are defined in terms of things you don’t know; that’s OK, just
keep skipping until you find one that makes sense. Write about it.
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