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This week, we will spend some time studying the basics of number theory,
which is essentially the study of the natural numbers (0, 1, 2, 3, . . . ). How
much could there be to say about natural numbers, you ask? Plenty!

This is an important area of study for many reasons. At a purely mathe-
matical level, it gives rise to a plethora of interesting questions which are
easy to ask but difficult to answer. The study of such questions has led to
all kinds of insights in other areas of mathematics. At a practical level, the
insights of number theory underlie all of modern cryptography. Every time
you (say) make a secure purchase from a website, your computer is doing
number theory! (Next week, we’ll explore the relationship between number
theory and cryptography directly.)

1 Natural numbers

The natural numbers, denoted N, are the set of positive integers and zero.naturals,

everywhere! That is,
N = {0, 1, 2, 3, . . . }.

For the next week or two, the natural numbers are all we will talk about! No
negative numbers, no fractions, no complex numbers. I’ll try to say things
like “x is a natural number,” but I’ll probably forget and say things like “x
is a number,” or just “x,” and you should just assume that I meant x is a
natural number, unless I specifically say otherwise. Got it? Let’s see if you
were paying attention:

Problem 1. Solve for x:
3x = 2.

2 Divisibility

You surely already know what is meant by divisibility : b is divisible by a

if dividing b by a leaves no remainder. But there is a slightly different way
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of formulating this which is often more useful: b is divisible by a if there is
some natural number k such that ak = b. That is, b is divisible by a if b is
a multiple of a.

divisibility
If a and b are natural numbers, we say that b is divisible

by a if there exists a natural number k such that

ak = b.

We also say that a divides b and write a | b.

You can typeset a | b in LATEX as a \mid b.

Problem 2. Which of the following are true statements? For each one that
is true, give the corresponding value of k.

(a) 2 | 6

(b) 13 | 91

(c) 14 | 7

(d) 5 | 5

(e) 6 | 19

(f) 0 | 7

(g) 7 | 0

(h) 0 | 0

(i) For every natural number n, 1 | n.

If a does not divide b, we sometimes write a ∤ b. (The “does not divide”
symbol can be typeset with \nmid.)
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3 Prime numbers

A prime number is one which is only divisible by itself and one.

prime number
A natural number p ≥ 2 is prime if k | p implies that k = 1
or k = p.

An interesting point about this definition is that only numbers p ≥ 2 can be1 is not prime!

prime. We specifically exclude 0 and 1, even though otherwise 1 would be
prime by this definition (the only numbers which divide 1 are 1 and. . . 1).
There’s a good reason for this, which we’ll see later.

Problem 3. Which of the following numbers are prime?

(a) 2

(b) 5

(c) 15

(d) 91

(e) 379

(f) 391

(g) 3549874082

(h) 90473512077

A natural number n ≥ 2 which is not prime is composite. Note that 0
and 1 are not composite! Every number greater than 1 is either prime or
composite, but 0 and 1 are neither.

Problem 4. The following statement is true for every n: If n is composite,

then it is divisible by some number k where 2 ≤ k ≤ √
n. In other words,

every composite number is divisible by something less than (or equal to) its
square root.

Why?
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Problem 5. If p and p + 2 are both prime, they are called twin primes.twin primes

For example, 5 and 7 are twin primes. Interestingly, no one knows whether
there are infinitely many pairs of twin primes, or if there is some largest pair
of twin primes after which there aren’t any more! Many mathematicians
believe that there are infinitely many; this is known as the Twin Prime

Conjecture.

List five pairs of twin primes.

3.1 Prime factorization and the Fundamental Theorem of

Arithmetic

As you probably know, every number greater than 1 can be factored into aprime factorization

product of prime numbers. For example, 2520 = 2 ·2 ·2 ·3 · 3 · 5 · 7 (which we
often write as 23 ·32 ·5·7 to save space). Not only that, but this factorization
into prime numbers is always unique, if you ignore the order of the prime
numbers (which makes sense; 3 · 7 and 7 · 3 are obviously the same prime
factorization of 21, since multiplication is commutative). This is called the
Fundamental Theorem of Arithmetic.

Fundamental

Theorem of

Arithmetic

Every natural number n ≥ 2 can be factored uniquely (up
to reordering) as the product of one or more prime num-
bers.

Of course, you’ve been factoring numbers since something like third grade, so
you’re probably quite familiar with this. But have you ever stopped to think
about how surprising this is? It’s obvious, by definition, that any number
can be factored into primes (if n isn’t prime, then by definition it must be
equal to the product of two numbers ab; then we repeat the argument for
a and b, and so on, until we’re left only with primes). But why should this
factorization be unique? How do we know there aren’t four primes p, q,
r, and s for which n = pq = rs—so the number n can be factored in two
different ways, as n = pq or as n = rs? It turns out there aren’t, but this
fact certainly isn’t obvious. Euclid was the first mathematician to think
about this problem, but Gauss was the first to rigorously prove it.

Problem 6. If 1 were a prime number, the Fundamental Theorem of Arith-
metic would no longer be true. Explain why.
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Problem 7. Give the prime factorization of each number. (Of course, if a
number p is prime, its prime factorization is just p—for example, the prime
factorization of 7 is 7).

(a) 55

(b) 1404

(c) 1001

(d) 65536

(e) 577

(f) 6859

4 GCD and the Euclidean Algorithm

The greatest common divisor of two numbers a and b, written gcd(a, b), isgcd by factoring

the largest natural number which is a divisor of both a and b. You were
probably taught how to find the gcd of two numbers in elementary school:
if you list out all their prime factors, you can just circle as many factors as
possible that occur in both. For example, to find the gcd of 84 and 630, we
can first factor them:

84 = 2 · 2 · 3 · 7
630 = 2 · 3 · 3 · 5 · 7

Then we note that they share a 2, a 3, and a 7, so their greatest common
divisor is gcd(84, 630) = 2 · 3 · 7 = 42. We can check: sure enough, 42 | 84
(k = 2), and 42 | 630 (k = 15).

However, this grade-school method of finding the greatest common divisorfactoring is hard

via factoring is not very efficient, because factoring is hard ! For example,
suppose you wanted to find the gcd of 7013113 and 2815433.1 To use the
above method, you would first have to factor them. I don’t know about
you, but that doesn’t sound like fun. In fact, it turns out that their prime
factorizations are

7013113 = 383 · 18311 and

2815433 = 383 · 7351.
1Don’t ask me why, just suppose you wanted to, OK?
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Yikes. Now that we know the factorizations, we can see that the gcd of
these two numbers is 383, but factoring those numbers by hand would have
taken forever.2

Well, it turns out that there’s a better way ! This better way is called thethe Euclidean

Algorithm Euclidean Algorithm, since it was invented by Euclid, an influential Greek
mathematician who lived around 300 BC. In a sense, you can think of the
Euclidean Algorithm as the oldest known computer program—an algorithm

is just a set of precise steps for solving a problem, which is exactly what a
computer program is. But back then, the computers were people.

So, how does it work? Let’s say we have two numbers a and b, and we want
to find their gcd. Suppose a > b. Now divide a by b, resulting in some
quotient q and remainder r. If r = 0, then a is divisible by b, and their
gcd is just b (b clearly divides itself, so if it divides a too, it is a common
divisor). Otherwise—here is the clever part—gcd(a, b) = gcd(b, r). That is,
if we throw away a and replace it by the remainder when dividing it by b,
the gcd is still the same! So we can continue repeating this process until
we get a remainder of zero. Since we are always replacing a by something
smaller, the process must eventually stop.

Let’s try an example: suppose we want to find gcd(22, 14). We divide 22 by
14, which gives a remainder of 8. The remainder isn’t zero, so we have to
replace 22 with 8 and keep going; now we are trying to find gcd(14, 8). Well,
14 divided by 8 leaves a remainder of 6, so now we want to find gcd(8, 6). 8
divided by 6 leaves a remainder of 2; finally, 6 divided by 2 is zero, so the
gcd is 2. More succinctly, we calculated that

gcd(22, 14) = gcd(14, 8) = gcd(8, 6) = gcd(6, 2) = 2.

Pretty easy, huh? And no factoring in sight!

Problem 8. Show how to compute each gcd using the Euclidean Algorithm.
Don’t just give the final answer; be sure to show your work.

(a) gcd(99, 5)

(b) gcd(840, 720)

(c) gcd(42, 35)

(d) gcd(43, 35)

2In fact, I cheated: I didn’t pick these two numbers randomly and then factor them; I

chose some big primes first and multiplied them to get the numbers!
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(e) gcd(7013113, 2815433)
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