#28: More Number Theory and RSA

May 9, 2009

This week, we’ll explore the math behind RSA, an ingenious system for
public-key cryptography. Never heard of public-key cryptography? Read on!

1 The key exchange problem and public-key cryp-
tography

Suppose Ronnie wants to send a secret message to Nathan. The problem
is that Ronnie is in Paris and Nathan is in Sao Paulo.! If Ronnie wants
to use, say, a Vigenere cipher to encrypt his secret message, he needs to
use a secret keyword—and Nathan needs to know the keyword, too. If they
already agreed on a keyword beforehand (back when they were both living in
Virginia), then there’s no problem. But otherwise, it will be very difficult for
them to agree on a secret keyword: presumably, the reason Ronnie wants
to encrypt his message to Nathan in the first place is because people are
eavesdropping on their communication! So sending a secret key to Nathan
by normal means (in the mail, over the phone) is out of the question. It
might be possible to securely transmit a secret key in some clever way, so
that Ronnie can be reasonably sure that Nathan will get it and no one else
will—but it will probably be a lot of work, and it will probably only work
once.

Problem 1. Come up with a clever way for Ronnie to get a secret key to
Nathan. Assume that they didn’t talk about it beforehand, and that there
are spies who are trying their best to eavesdrop on their communication.
(So, for example, you can be sure that spies will be listening to any phone
conversations and reading any mail.)

Okay, but what if Nathan wants to send individual secret messages to each
of the 1,000 members of his fan club? It just isn’t possible to go through
all the difficult work of securely getting 1,000 different secret keys to each
of them. So it seems like Nathan is out of luck.

T could tell you what they are doing in those places, but then I'd have to kill you.

1 © Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

This is called the key exchange problem, and is a fundamental problem for
any symmetric cipher. A symmetric cipher is one where you need the same
secret key both for encoding and decoding secret messages. The secrecy of
messages encoded using a symmetric cipher is only as good as the secrecy of
the secret key, but if both people need to know the key, being able to agree
on a key without other people finding out what it is can be a real problem.

However, there are other kinds of ciphers known as asymmetric ciphers. In
an asymmetric cipher, different keys are used for encrypting and decrypting.
Of course, this isn’t necessarily any better—now people wishing to commu-
nicate need to agree on two keys that work together. But there’s another
sort of asymmetric cipher which avoids problem.

Here’s how it works: with a symmetric cipher, Ronnie and Nathan have to
agree on a secret key. With a public-key system, they don’t need to agree on
anything at alll Nathan uses a particular mathematical algorithm (which
we’ll talk about later) to choose two related keys: one, his public key, he
posts on his website, his blog, in his email signature, for the whole world—
even his enemies—to see. The other, his private key, he keeps absolutely
secret, even from his most trusted friends. When Ronnie wants to send
Nathan a secret message, he looks up Nathan’s public key (which is easy,
since it is very public—perhaps there is even a directory listing people’s
public keys, like a phone book) and uses it to encrypt the message. But now
comes the interesting part about Nathan’s keys: the only way to decrypt
the message is by using Nathan’s private key! The mathematical algorithm
that Nathan used to choose his two keys guarantees this. So Ronnie can be
sure that Nathan is the only person who can read the message (assuming
that Nathan has kept his private key a secret). The result is that anyone at
all can send messages to Nathan, but Nathan is the only one who can read
them. If Nathan wants to send a secret message back to Ronnie, of course,
Ronnie can generate his own pair of public/private keys, and Nathan can
use Ronnie’s public key to encrypt the message.

This sounds like a wonderful system, but it almost seems too good to be
true. You might have some questions, such as:

1. How is this possible?

2. If you use a mathematical algorithm to choose a public and private
keys, how come people can’t just reverse the algorithm to compute
your private key from the public one?

2 (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

Bézout’s
identity

Excellent questions! For now, you can just take my word that it is possible.
The first people to come up with a way of doing this, in 1977, were Ronald
Rivest, Adi Shamir, and Leonard Adleman—and the system they invented
is named after their initials, RSA. RSA (or something closely related to it) is
still used today by computers all over the world for transmitting encrypted
information (such as when you send your credit card number to Amazon).
Before we see how RSA works, we’ll have to (surprise!) learn a bit more
math!

2 Bézout’s Identity and the Extended Euclidean
Algorithm

Recall that the ged (greatest common divisor) of any two numbers is the
largest natural number which evenly divides both of them. It turns out the
ged has an interesting property, known as Bézout’s Identity (named for the
French mathematician Etienne Bézout, who proved a more general version
than the one shown here):

For any two natural numbers a and b, there are integers x
and y for which

ax + by = ged(a, b).

For example, suppose a = 10 and b = 6. gcd(10,6) = 2, so Bézout’s identity
says that there should be integers x and y for which 10x + 6y = 2.

Problem 2. Find integer values of x and y for which 10x 4+ 6y = 2. Note
that x and y should be integers—that is, they can be negative (obviously,
one of them will have to be, otherwise 10z + 6y would be too big!), but they
cannot have any fractional part. For example, x = —1.6,y = 3 works, but
does not count as a solution since x is not an integer.

Problem 3. For each pair of numbers, find the ged, and then find integers
x and y which satisfy Bézout’s identity.

3 (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

(¢c) a=19,b=23

At this point you’re probably wondering if there’s a faster way to find x and
y than just guessing. Of course, I wouldn’t tell you about it if there wasn’t!
It turns out that we can extend Euclid’s Algorithm (which, remember, is
for finding the ged) so that it finds the ged of two numbers and z and y in
Bézout’s identity at the same time. This is called (drumroll) the Extended
Euclid Algorithm.?

Here’s how it works. Suppose we are trying to find the ged of 19 and 7.
Remember how Euclid’s algorithm works: we repeatedly divide the smaller
number into the larger, and take the remainder. We could write the steps
of Euclid’s algorithm in a vertical column, like this:

—
Nej

=N Ot

That is, 19 divided by 7 gives a remainder of 5; 7 divided by 5 gives a
remainder of 2, and 5 divided by 2 gives a remainder of 1; since 2 divided
by 1 gives a remainder of 0, the gcd of 19 and 7 is 1. To extend this to
also compute = and y from Bézout’s identity, we make two more columns of
numbers. We start like this:

n o x y
19 1 0
7 0 1
)
2
1

Note that I have labelled the columns n, x, and ¥, so it will be easier to talk
about them. For each row, it should be the case that 19z + 7y = n. This is
obviously true for the first two rows: 19-1+7-0=19, and 19-047-1=7.
We know that the n in the very last row is the ged of 19 and 7, so if we can

?Bet you can never guess why.

4 (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

only find a way to fill in the missing rows, the values of x and y in the very
last row will be the numbers from Bézout’s identity!

Here’s how to compute the missing rows. Since 19 divided by 7 is 2 (with
a remainder of 5), to get the third row we subtract 2 times the second row
from the first row. That is, in the x column, 1 — 2 -0 = 1, and in the y
column, 0 — 2 -1 = —2. Now the table looks like this:

n T y
19 1 0
7 0 1
5 1 =2
2
1

Let’s check: is 19-1+ (—2) - 7= 57 Yup!

Now, 7 divided by 5 is 1 (remainder 2), so we subtract 1 times the third row
from the second row: 0 —1-1=—1,and 1 —1-(—2) = 3. (You have to be
really careful with your positives and negatives when doing this algorithm!)
Now the table looks like this:

n x Y
19 1 0
7 0 1
) 1 -2
2 -1 3
1

And sure enough, 19 - (—1) +3 -7 =21 — 19 = 2. Finally, we fill in the last
row: 2 goes into 5 twice, so we subtract twice the fourth row from the third
row: 1—2-(=1)=14+2=3,and —2—-2-(3) = -8.

n x Y
19 1 0
7 0 1
) 1 -2
2 -1 3
1 3 =8

And now for the final check: 19-3+ 7. (—8) = 57 — 56 = 1! Sure enough,
we have found Bézout’s x and y. Now you try a few.

5 (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

Problem 4. For each pair of numbers, use the Extended Euclidean Algo-
rithm to find the gcd and Bézout’s = and y.

(a) 10 and 19
(b) 28 and 16
(c) 37 and 84

3 Modular inverses

Okay, but why would anyone care about finding Bézout’s and y? It seems
more like a curiosity than anything actually important.

Well, consider the following question. Suppose we are doing arithmetic
modulo n, and we have some natural number j. Is there another natural
number k for which j& = 1 (mod n)? If such a k exists, it is called the
modular inverse of j (mod n). Modular inverses are important in a number

of applications, and, as we will see, play a particularly important role in
RSA.

Why are modular inverses interesting? Well, if we were using normal arith-
metic instead of modular arithmetic, asking whether there is some natural
number k for which jk& = 1 would be a silly question. Is there a natural
number k such that, say, 5k = 17 Of course not! 5k will always be too big
(unless k = 0 which doesn’t work either). The only solution to the equation
5k = 11is k = 1/5, but that isn’t a natural number. But if we are using
modular arithmetic—on a number “circle” instead of a number line—then
things wrap around, and this isn’t a silly question anymore.

Problem 5. Find a natural number k such that 5k =1 (mod 7).

Problem 6. Can you find a natural number & for which 5k =1 (mod 10)?
If so, state a value of k that works; if not, explain why.

Suppose ged(j, n) = 1 and we want to find the modular inverse of j (mod n).
Using the Extended Euclidean Algorithm, we can find integers x and y for
which jx + ny = 1. But consider this equation modulo n. ny is obviously
divisible by n, so ny =0 (mod n). But that means that

jr4+ny=jr+0=jr=1 (modn).

So x is the modular inverse of j!

6 (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

Problem 7. For each value of j and n, find the modular inverse of j
(mod n), or state that no modular inverse exists.

There’s only one more thing you need to know about to understand how
RSA works.

4 The totient function and Euler’s Theorem

Euler’s totient function, denoted by ¢(n) and sometimes also called the phi
function, counts how many natural numbers less than n are relatively prime
to n, that is, have a ged of 1 with n. (You can make the symbol ¢ with
\varphi.)

For example, ¢(8) = 4, since there are four numbers less than 8 which are
relatively prime to 8 (that is, share no common factors with 8): 1, 3, 5,
and 7. As another example, ¢(14) = 6, since 1,3,5,9,11,and 13 are relatively
prime to 14.

Problem 8. Compute each of the following.

(a) ©(9)
(b) ¢(60)
(c) »(17)
(d) ¢(15)

Problem 9. If p is a prime number, what is ¢(p)?

Problem 10. It turns out that if ¢ and b are any two relatively prime
numbers, p(ab) = p(a)e(b). Using your solution to the previous problem, if
p and ¢ are prime numbers, what is ¢(pq)?

7 © Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

In 1736, Euler proved a very famous (and important) theorem about ¢,
called Euler’s Theorem: if a and n are relatively prime, then

a?™ =1 (mod n).

I won’t show you the proof (or make you do it!), but you can take my (well,
really Euler’s) word for it. This turns out to be one of the keys that makes
RSA work.

5 RSA

Okay, we're finally ready to see how RSA works! Remember, the goal is to
somehow generate two keys—a public key and a private key—and a method
of using them to encrypt and decrypt messages, so that messages encrypted
with the public key can be decrypted only with the private key. We also
want to make sure that it’s very difficult to figure out the private key if you
only know the public key.

Start by picking two large prime numbers, p and q. We'll use p = 5 and

= 7. Of course, these are not actually very large, but that’s just so that
the example will be manageable. In practice you would choose primes that
are hundreds or even thousands of digits long. (There are fast algorithms for
testing whether a given number is prime, so you can just randomly choose,
say, 1000-digit numbers until you find two that are prime.) Let n be the
product of p and ¢; in our example, n = 5-7 = 35. From now on we will be
working modulo n.

Now compute p(n) = ¢(pg) = (p — 1)(¢ — 1). In our example, p(35) =
(5—1)(7—1) = 24. Now pick any number e which is relatively prime to
¢(n); this will be the public key. In our example, we might pick, say, e = 5.
(Note that it is important that e is relatively prime to ¢(n); in our example,
5 is relatively prime to 24 so this is okay.)

Now, here’s why it’s important that e is relatively prime to ¢(n): the next
step is to compute the modular inverse of e (mod ¢(n)), using the Extended
Euclidean algorithm. Call the modular inverse d. This will be the private
key. In our example, the modular inverse of 5 (mod 24) is 5, since 5-5 =
25 =1 (mod 24). Whoops! This is a bad choice for e; we don’t want the
public and private keys to be the same! So we go back and choose a different
value of e: let’s try e = 7. The modular inverse of 7 (mod 24) is...7. Hmm.
Actually, it turns out that 24 is a very bad value for ¢(n): every number

8 (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

relatively prime to 24 is its own modular inverse! So we have to go back to
the drawing board and pick different values of p and ¢.3

This time, let’s choose p = 3 and ¢ = 11. Therefore n = 33, and ¢(n) =
(3—1)(11 — 1) = 20. We pick a value of e relatively prime to 20: let’s
try e = 3. The modular inverse of 3 (mod 20) is 7, since 3-7 =21 =1
(mod 20). Oh good! The public key e and private key d are different.

Now, we make public the values of n and e. We must keep secret p, q, p(n),
and d. Given only n and e, the only way for an evil spy to figure out d would
be to factor n into p - ¢; from there the evil spy could follow the exact same
steps we did to compute d. But this is the key: factoring is hard! That
is, factoring thousand-digit numbers takes a Very Long Time. You can do
it—IF you have lots of supercomputers and are willing to wait a hundred
or a thousand or a trillion years for the answer (depending on how big the
number is you want to factor).? On the other hand, multiplying 1000-digit
numbers is very easy. Your computer can multiply two 1000-digit numbers
in a fraction of a second. We got to choose p and ¢ and then multiply them
to get n, leaving the evil spy with the much more difficult task of reversing
the process!

Now, suppose someone wants to send us a message. They know the values
of e and n. Here’s what they do: they somehow convert their message into
a number, or a sequence of numbers, each of which is smaller than n. It
doesn’t really matter how the conversion process works, as long as everyone
knows what it is and it can be reversed. For example, suppose someone
wanted to transmit the message “HI”. Since n = 33, they can just use a
number for each letter, just like you did last week. So, they could use 7 for
H and 8 for I. In practice, n is much larger, and you would convert whole
paragraphs at a time into one big number, but the idea is the same.

Now for each number a that they want to encode, they compute

b=a® (mod n).

31 didn’t do this on purpose: I just randomly chose values for p and ¢ and only realized
later that it wasn’t a good example. But I decided to leave it in, because actually, in some
sense it is a good example. When using RSA, you often have to just keep trying different
things until you find one that works well; some choices can accidentally generate insecure
keys, as you have seen from this example. In practice, with a computer doing the work,
this isn’t a problem. Computers don’t mind doing something over and over until they find
something that works.

4Technically, no one has proved this for certain—there is a small chance that there
actually is a fast way to factor large numbers, and it’s only that no one has been clever
enough to come up with it yet—but there are many very good reasons for believing that
this is not true.

9 (© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

In this example, they would compute
73 (mod 33)

and
83 (mod 33).

There are fast ways to perform this “modular exponentiation.” For example,
you can actually keep reducing mod 33 as you go:

B=7-7-7=49-7=16-7=112=13 (mod 33)

and
83=8.8-8=64-8=(-2)-8=(—16) =17 (mod 33).
So the encrypted message they would transmit would be “13 17”.

On our end, we perform the same process, but with d instead of e! That is,
we compute
bY (mod n).

So, in this example we compute
137 (mod 33)

and
177 (mod 33).

Computing 137 (mod 33) might seem daunting, but it’s actually not too
bad. We can use the method of “repeated squaring.” Note that 137 =
13- 132 - 13%. So, we compute:

132=13-13=169=4 (mod 33),

and therefore
132=132.132=4-4=16 (mod 33),

and putting it all together,
137=13-132-13'=13-4-16=52-16 =19-16 =304 =7 (mod 33).
Voila! We have recovered the first number of the original message!

Problem 11. Compute 177 (mod 33) using the method of repeated squar-
ing, and show that it is equal to 8, the second number in the original message.
Show your work!

10 © Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

Why does this work? Well, (a®)? = a® = a't%¢(") (the last equality is
because we know ed = 1 (mod ¢(n)); hence ed must be one more than
some multiple of ¢(n)). Then

althe(n) — . (ak)“P(") =a (mod n),

because of Euler’s theorem.?

Problem 12. Make your own public/private key pair! Choose primes p and
q and use them to compute d and e. Report the values of p and ¢ that you
chose, as well as the values of n, ¢(n), e, and d. Choose a short message
and encrypt it using your public key.

If you want to make your own public/private key pair in real life (using
primes hundreds of digits long instead of primes like 11), I recommend using
GnuPG, http://www.gnupg.org/.

6 Digital signatures

That’s all for the problems on this week’s assignment, but I thought you
might be interested to know one more way that public/private key systems
can be used. Suppose Nathan gets an encrypted message. He decrypts
it using his private key. The decrypted message reads, “Dear Nathan, I
hate you. —Ronnie.” How does Nathan know the message is really from
Ronnie? It could be from an evil spy who just wants Nathan to think that
Ronnie hates him. After all, Nathan’s public key is public, so anyone can
encrypt a message to him! This is where digital signatures come in. It
relies on the fact that the public/private key pairs generated by RSA can be
used symmetrically: not only can things encrypted with the public key be
decrypted with the private key, but the other way around works too: things
encrypted with the private key can be decrypted with the public key.

Let’s say Ronnie wants to send Nathan the message “HI” but he wants
Nathan to be really sure that it is from him. First, Ronnie encrypts the mes-
sage “HI” using his (Ronnie’s) own private key. Suppose he gets “FLERG”
as the encrypted message. Then he encrypts “This is a signed message from
Ronnie: FLERG” using Nathan’s public key; suppose he gets “ZORK”.

5Actually, Euler’s theorem would only apply if a and n are relatively prime, but we
don’t necessarily know that; however, it can be shown that in this special case this holds
no matter what a is.

11 © Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

That seems strange, what’s the point? Why would Ronnie encrypt some-
thing twice, and using his own private key of all things?

Well, when Nathan gets the encrypted message “ZORK”, he first decrypts
it using his private key. Remember, no one else can do this, so evil spies
looking at the encrypted message “ZORK” won’t even know it is from Ron-
nie. Nathan now gets the message “This is a signed message from Ronnie:
FLERG”. Here’s the interesting part. Nathan now uses Ronnie’s public key
to decrypt “FLERG”, and gets out the original message, “HI”. Ronnie is the
only person who knows his own private key, so if this works, then Nathan
can be really sure that it was actually Ronnie who sent the message—mno
one else would be able to encrypt a message which can be decrypted using
Ronnie’s public key.

Now, back to the message Nathan got from “Ronnie” saying that Ronnie
hates him. Nathan notices that it was not signed, so he can ignore it,
or he can even send a message back to wherever the message came from,
challenging “Ronnie” to prove that he is really Ronnie by digitally signing
a message with his private key. Of course, assuming that Ronnie’s private
key is secret,® no one but Ronnie will actually be able to do this.

The actual details of digital signatures are a bit different in practice (for
example, in practice no one actually encodes the entire message using their
private key to sign it; they just compute a small number called a hash which
is a function of the entire message, and then sign that and append it to the
message before encrypting it with the recipient’s public key), but the basic
ideas are the same.

Neat, huh? And this is not just theoretical, either: this is really used all the
time for transmitting sensitive information in a secure, authenticated way.

50f course, it’s always possible that a hacker stole Ronnie’s private key, or that Ronnie
gave his private key to someone he thought was trustworthy but wasn’t, or that this
person Nathan knows as “Ronnie” is actually an evil robot spy from the planet Zorkotron.
Cryptography can’t solve all Nathan’s problems. ..

12 © Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.

