
Journal of Functional Programming, pages, 2024. © Cambridge University Press 2024 1
doi:10.1017/xxxxx

F U N C T I O N A L P E A R L

You Could Have Invented Fenwick Trees
BRENT A. YORGEY

Hendrix College
1600 Washington Ave, Conway, AR 72032, USA

e-mail: yorgey@hendrix.edu

Abstract

Fenwick trees, also known as binary indexed trees, are a clever solution to the problem of maintaining a
sequence of values while allowing both updates and range queries in sublinear time. Their implemen-
tation is concise and efficient—but also somewhat baffling, consisting largely of non-obvious bitwise
operations on indices. We begin with segment trees, a much more straightforward, easy-to-verify,
purely functional solution to the problem, and use equational reasoning to explain the implementation
of Fenwick trees as an optimized variant, making use of a Haskell EDSL for operations on infinite
two’s complement binary numbers.

1 Introduction

Suppose we have a sequence of 𝑛 integers 𝑎1, 𝑎2, . . . , 𝑎𝑛, and want to be able to perform
arbitrary interleavings of the following two operations, illustrated in Figure 1:

• Update the value at any given index1 𝑖 by adding some value 𝑣.
• Find the sum of all values in any given range [𝑖, 𝑗], that is, 𝑎𝑖 + 𝑎𝑖+1 + · · · + 𝑎 𝑗 . We

call this operation a range query.

Note that update is phrased in terms of adding some value 𝑣 to the existing value; we can
also set a given index to a new value 𝑣 by adding 𝑣 − 𝑢, where 𝑢 is the old value.

If we simply store the integers in a mutable array, then we can update in constant time,
but range queries require time linear in the size of the range, since we must iterate through
the entire range [𝑖, 𝑗] to add up the values.

In order to improve the running time of range queries, we could try to cache (at least
some of) the range sums. However, this must be done with care, since the cached sums
must be kept up to date when updating the value at an index. For example, a straightforward
approach would be to use an array 𝑃 where 𝑃𝑖 stores the prefix sum 𝑎1 + · · · + 𝑎𝑖; 𝑃

can be precomputed in linear time via a scan. Now range queries are fast: we can obtain
𝑎𝑖 + · · · + 𝑎 𝑗 in constant time by computing 𝑃 𝑗 − 𝑃𝑖−1 (for convenience we set 𝑃0 = 0 so

1 Note that we use 1-based indexing here and throughout the paper, that is, the first item in the sequence has
index 1. The reasons for this choice will become clear later.

2

𝑎2 + 𝑎3 + (𝑎4 + 𝑣) + 𝑎5

range query

𝑎8𝑎7𝑎6𝑎5𝑎4 + 𝑣𝑎3𝑎2𝑎1

update

𝑎8𝑎7𝑎6𝑎5𝑎4𝑎3𝑎2𝑎1

Fig. 1. Update and range query operations

this works even when 𝑖 = 1). Unfortunately, it is update that now takes linear time, since
changing 𝑎𝑖 requires updating 𝑃 𝑗 for every 𝑗 ⩾ 𝑖.

Is it possible to design a data structure that allows both operations to run in sublinear
time? (You may wish to pause and think about it before reading the next paragraph!) This
is not just academic: the problem was originally considered in the context of arithmetic
coding (Rissanen and Langdon, 1979; Bird and Gibbons, 2002), a family of techniques for
turning messages into sequences of bits for storage or transmission. In order to minimize
the bits required, one generally wants to assign shorter bit sequences to more frequent
characters, and vice versa; this leads to the need to maintain a dynamic table of character
frequencies. We update the table every time a new character is processed, and query the table
for cumulative frequencies in order to subdivide a unit interval into consecutive segments
proportional to the frequency of each character (Fenwick, 1994; Ryabko, 1989).

So, can we get both operations to run in sublinear time? The answer, of course, is yes.
One simple technique is to divide the sequence into

√
𝑛 buckets, each of size

√
𝑛, and create

an additional array of size
√
𝑛 to cache the sum of each bucket. Updates still run in 𝑂 (1),

since we simply have to update the value at the given index and the corresponding bucket
sum. Range queries now run in 𝑂 (

√
𝑛) time: to find the sum 𝑎𝑖 + · · · + 𝑎 𝑗 , we manually add

the values from 𝑎𝑖 to the end of its bucket, and from 𝑎 𝑗 to the beginning of its bucket; for
all the buckets in between we can just look up their sum.

We can make range queries even faster, at the cost of making updates slightly slower, by
introducing additional levels of caching. For example, we can divide the sequence into 3√𝑛
“big buckets”, and then further subdivide each big bucket into 3√𝑛 “small buckets”, with
each small bucket holding 3√𝑛 values. The sum of each bucket is cached; now each update
requires modifying three values, and range queries run in 𝑂 (3√𝑛) time.

In the limit, we end up with a binary divide-and-conquer approach to caching range
sums, with both update and range query taking 𝑂 (lg 𝑛) time. In particular, we can make
a balanced binary tree where the leaves store the sequence itself, and every internal node
stores the sum of its children. (This will be a familiar idea to many functional programmers;
for example, finger trees (Hinze and Paterson, 2006; Apfelmus, 2009) use a similar sort
of caching scheme.) The resulting data structure is popularly known as a segment tree2,

2 There is some confusion of terminology here. As of this writing, the Wikipedia article on segment trees
(Wikipedia contributors, 2024) is about an interval data structure used in computational geometry. However,
most of the Google search results for “segment tree” are from the world of competitive programming, where

3

38

11

2-6

-4

7

5-2

3

6-1

5

8

15

-46

2

-21

-1

1

11

2

40

4

6

7

22

Fig. 2. A segment tree

presumably because each internal node ultimately caches the sum of a (contiguous) segment
of the underlying sequence. Figure 2 shows a segment tree built on a sample array of length
𝑛 = 16 (for simplicity, we will assume that 𝑛 is a power of two, although it is easy to
generalize to situations where it is not). Each leaf of the tree corresponds to an array entry;
each internal node is drawn with a grey bar showing the segment of the underlying array of
which it is the sum.

Let’s see how we can use a segment tree to implement the two required operations so
that they run in logarithmic time.

• To update the value at index 𝑖, we also need to update any cached range sums which
include it. These are exactly the nodes along the path from the leaf at index 𝑖 to the
root of the tree; there are 𝑂 (lg 𝑛) such nodes. Figure 3 illustrates this update process
for the example segment tree from Figure 2; updating the entry at index 5 requires
modifying only the shaded nodes along the path from the root to the updated entry.

• To perform a range query, we descend through the tree while keeping track of the
range covered by the current node.

– If the range of the current node is wholly contained within the query range,
return the value of the current node.

– If the range of the current node is disjoint from the query range, return 0.
– Otherwise, recursively query both children and return the sum of the results.

Figure 4 illustrates the process of computing the sum of the range [4 . . . 11]. Blue
nodes are the ones we recurse through; green nodes are those whose range is wholly
contained in the query range, and are returned without recursing further; grey nodes
are disjoint from the query range and return zero. The final result in this example is
the sum of values at the green nodes, 1 + 1 + 5 + −2 = 5 (it is easily verified that this
is in fact the sum of values in the range [4 . . . 11]).
On this small example tree, it may seem that we visit a significant fraction of the total
nodes, but in general, we visit no more than about 4 lg 𝑛. Figure 5 makes this more

it refers to the data structure considered in this paper (see, for example, Halim et al. (2020, §2.8) or Ivanov
(2011)). The two data structures are largely unrelated.

4

38

11

2-6

-4

7

5-2

3

6-1

5

8

15

-46

2

-24

2

4

11

2

40

4

6

10

25

Fig. 3. Updating a segment tree

38

11

2-6

-4

7

5-2

3

6-1

5

8

15

-46

2

-21

-1

1

11

2

40

4

6

7

22

Fig. 4. Performing a range query on a segment tree

Fig. 5. Performing a range query on a larger segment tree

clear. Only one blue node in the entire tree can have two blue children, and hence
each level of the tree can contain at most two blue nodes and two non-blue nodes.
We essentially perform two binary searches, one to find each endpoint of the query
range.

Segment trees are a very nice solution to the problem: as we will see in Section 2, they
fit well in a functional language; they also lend themselves to powerful generalizations

5

class FenwickTree {
private long[] a;
public FenwickTree(int n) { a = new long[n+1]; }
public long prefix(int i) {

long s = 0;
for (; i > 0; i -= LSB(i)) s += a[i]; return s;

}
public void update(int i, long delta) {

for (; i < a.length; i += LSB(i)) a[i] += delta;
}
public long range(int i, int j) {

return prefix(j) - prefix(i-1);
}
public long get(int i) { return range(i,i); }
public void set(int i, long v) { update(i, v - get(i)); }
private int LSB(int i) { return i & (-i); }

}

Fig. 6. Implementing Fenwick trees with bit tricks

such as lazily propagated range updates and persistent update history via shared immutable
structure (Ivanov, 2011).

Fenwick trees, or binary indexed trees (Fenwick, 1994; ?), are an alternative solution to
the problem. What they lack in generality, they make up for with an extremely small memory
footprint—they require literally nothing more than an array storing the values in the tree—
and a blazing fast implementation. In other words, they are perfect for applications such as
low-level coding/decoding routines where we don’t need any of the advanced features that
segment trees offer, and want to squeeze out every last bit of performance.

Figure 6 shows a typical implementation of Fenwick trees in Java. As you can see, the
implementation is incredibly concise, and consists mostly of some small loops doing just
a few arithmetic and bit operations per iteration. It is not at all clear what this code is
doing, or how it works! Upon closer inspection, the range, get, and set functions are
straightforward, but the other functions are a puzzle. We can see that both the prefix and
update functions call another function LSB, which for some reason performs a bitwise
logical AND of an integer and its negation. In fact, LSB(x) computes the least significant
bit of 𝑥, that is, it returns the smallest 2𝑘 such that the 𝑘th bit of 𝑥 is a one. However, it is
not obvious how the implementation of LSB works, nor how and why least significant bits
are being used to compute updates and prefix sums.

Our goal is not to write elegant functional code for this—already solved!—problem.
Rather, our goal will be to use a functional domain-specific language for bit strings, along
with equational reasoning, to derive and explain this baffling imperative code from first
principles—a demonstration of the power of functional thinking and equational reasoning
to understand code written even in other, non-functional languages. After developing more
intuition for segment trees (Section 2), we will see how Fenwick trees can be viewed as
a variant on segment trees (Section 3). We will then take a detour into two’s complement
binary encoding, develop a suitable DSL for bit manipulations, and explain the implemen-
tation of the LSB function (Section 4). Armed with the DSL, we will then derive functions
for converting back and forth between Fenwick trees and standard binary trees (Section 5).
Finally, we will be able to derive functions for moving within a Fenwick tree by converting
to binary tree indices, doing the obvious operations to effect the desired motion within the

6

type Index = Int
data Range = Index :—: Index -- (𝑎 :—: 𝑏) represents the closed interval [𝑎, 𝑏]

deriving (Eq, Show)
(⊆) :: Range→ Range→ Bool
(lo1 :—: hi1) ⊆ (lo2 :—: hi2) = lo2 ⩽ lo1 ∧ hi1 ⩽ hi2
(∈) :: Index→ Range→ Bool
k ∈ i = (k :—: k) ⊆ i
disjoint :: Range→ Range→ Bool
disjoint (lo1 :—: hi1) (lo2 :—: hi2) = hi1 < lo2 ∨ hi2 < lo1

Fig. 7. Range utilities

binary tree, and then converting back. Fusing away the conversions via equational reasoning
will finally reveal the hidden LSB function, as expected (Section 6).

This paper was produced from a literate Haskell document; the source is available from
GitHub, at https://github.com/byorgey/fenwick/blob/master/Fenwick.lhs.

2 Segment Trees

Figure 8 exhibits a simple implementation of a segment tree in Haskell, using some utilities
for working with index ranges shown in Figure 7. We store a segment tree as a recursive
algebraic data type, and implement update and rq using code that directly corresponds
to the recursive descriptions given in the previous section; get and set can then also be
implemented in terms of them. It is not hard to generalize this code to work for segment
trees storing values from either an arbitrary commutative monoid if we don’t need the set
operation—or from an arbitrary Abelian group (i.e. commutative monoid with inverses) if
we do need set—but we keep things simple since the generalization doesn’t add anything
to our story.

Although this implementation is simple and relatively straightforward to understand,
compared to simply storing the sequence of values in an array, it incurs a good deal of
overhead. We can be more clever in our use of space by storing all the nodes of a segment
tree in an array, using the standard left-to-right breadth-first indexing scheme illustrated in
Figure 9 (for example, this scheme, or something like it, is commonly used to implement
binary heaps). The root has label 1; every time we descend one level we append an extra
bit: 0 when we descend to the left child and 1 when we descend to the right. Thus, the index
of each node expressed in binary records the sequence of left-right choices along the path
to that node from the root. Going from a node to its children is as simple as doing a left
bit-shift and optionally adding 1; going from a node to its parent is a right bit-shift. This
defines a bijection from the positive natural numbers to the nodes of an infinite binary tree.
If we label the segment tree array with 𝑠1 . . . 𝑠2𝑛−1, then 𝑠1 stores the sum of all the 𝑎𝑖 , 𝑠2
stores the sum of the first half of the 𝑎𝑖 , 𝑠3 stores the sum of the second half, and so on.
𝑎1 . . . 𝑎𝑛 themselves are stored as 𝑠𝑛 . . . 𝑠2𝑛−1.

https://github.com/byorgey/fenwick/blob/master/Fenwick.lhs

7

data SegTree where
Empty :: SegTree
Branch :: Integer→ Range→ SegTree→ SegTree→ SegTree

update :: Index→ Integer→ SegTree→ SegTree
update Empty = Empty
update i v b@(Branch a rng l r)
| i ∈ rng = Branch (a + v) rng (update i v l) (update i v r)
| otherwise = b

rq :: Range→ SegTree→ Integer
rq Empty = 0
rq q (Branch a rng l r)
| disjoint rng q = 0
| rng ⊆ q = a
| otherwise = rq q l + rq q r

get :: Index→ SegTree→ Integer
get i = rq (i :—: i)
set :: Index→ Integer→ SegTree→ SegTree
set i v t = update i (v − get i t) t

Fig. 8. Simple segment tree implementation in Haskell

1514

7

1312

6

3

1110

5

98

4

2

1

Fig. 9. Indexing a binary tree

The important point is that since descending recursively through the tree corresponds to
simple operations on indices, all the algorithms we have discussed can be straightforwardly
transformed into code that works with a (mutable) array: for example, instead of storing a
reference to the current subtree, we store an integer index; every time we want to descend
to the left or right we simply double the current index or double and add one; and so on.
Working with tree nodes stored in an array presents an additional opportunity: rather than
being forced to start at the root and recurse downwards, we can start at a particular index
of interest and move up the tree instead.

So how do we get from segment trees to Fenwick trees? We start with an innocuous-
seeming observation: not all the values stored in a segment tree are necessary. Of course,

8

8-6

-4

-2-1

5

8

61

-1

10

4

6

7

22

Fig. 10. Inactivating all right children in a segment tree

all the non-leaf nodes are “unnecessary” in the sense that they represent cached range sums
which could easily be recomputed from the original sequence. That’s the whole point:
caching these “redundant” sums trades off space for time, allowing us to perform arbitrary
updates and range queries quickly, at the cost of doubling the required storage space.

But that’s not what I mean! In fact, there is a different set of values we can forget about,
but in such a way that we still retain the logarithmic running time for updates and range
queries. Which values, you ask? Simple: just forget the data stored in every node which
is a right child. Figure 10 shows the same example tree we have been using, but with the
data deleted from every right child. Note that “every right child” includes both leaves and
internal nodes: we forget the data associated to every node which is the right child of its
parent. We will refer to the nodes with discarded data as inactive and the remaining nodes
(that is, left children and the root) as active. We also say that a tree with all its right children
inactivated in this way has been thinned.

Updating a thinned segment tree is easy: just update the same nodes as before, ignoring
any updates to inactive nodes. But how do we answer range queries? It’s not too hard
to see that there is enough information remaining to reconstruct the information that was
discarded (you might like to try convincing yourself of this: can you deduce what values
must go in the greyed-out nodes in Figure 10, without peeking at any previous figures?).
However, in and of itself, this observation does not give us a nice algorithm for computing
range sums.

It turns out the key is to think about prefix sums. As we saw in the introduction and the
implementation of range in Figure 6, if we can compute the prefix sum 𝑃𝑘 = 𝑎1 + · · · + 𝑎𝑘
for any 𝑘 , then we can compute the range sum 𝑎𝑖 + · · · + 𝑎 𝑗 as 𝑃 𝑗 − 𝑃𝑖−1.

Theorem 1. Given a thinned segment tree, the sum of any prefix of the original array (and
hence also any range sum) can be computed, in logarithmic time, using only the values of
active nodes.

Proof Surprisingly, in the special case of prefix queries, the original range query algorithm
described in Section 1 and implemented in Figure 8 works unchanged! That is to say, the

9

Fig. 11. Performing a prefix query on a segment tree

base case in which the range of the current node is wholly contained within the query
range—and we thus return the value of the current node—will only ever happen at active
nodes.

First, the root itself is active, and hence querying the full range will work. Next, consider
the case where we are at a node and recurse on both children. The left child is always active,
so we only need to consider the case where we recurse to the right. It is impossible that
the range of the right child will be wholly contained in the query range: since the query
range is always a prefix of the form [1, 𝑗], if the right child’s range is wholly contained in
[1, 𝑗] then the left child’s range must be as well—which means that the parent node’s range
(which is the union of its children’s ranges) would also be wholly contained in the query
range. But in that case we would simply return the parent’s value without recursing into the
right child. Thus, when we do recurse into a right child, we might end up returning 0, or
we might recurse further into both grandchildren, but in any case we will never try to look
at the value of the right child itself. ■

Figure 11 illustrates performing a prefix query on a segment tree. Notice that visited
right children are only ever blue or grey; the only green nodes are left children.

3 Fenwick trees

How should we actually store a thinned segment tree in memory? If we stare at Figure 10
again, one strategy suggests itself: simply take every active node and “slide” it down and to
the right until it lands in an empty slot in the underlying array, as illustrated in Figure 12.
This sets up a one-to-one correspondence between active nodes and indices in the range
1 . . . 𝑛. Another way to understand this indexing scheme is to use a postorder traversal
of the tree, skipping over inactive nodes and giving consecutive indices to active nodes
encountered during the traversal. We can also visualize the result by drawing the tree in a
“right-leaning” style (Figure 13), vertically aligning each active node with the array slot
where it is stored.

10

228-4-68-25-176-116140

8-6

-4

-2-1

5

8

61

-1

10

4

6

7

22

Fig. 12. Sliding active values down a thinned segment tree

8-6

-4

-2-1

5

8

61

-1

10

4

6

7

22

Fig. 13. Right-leaning drawing of a thinned segment tree, vertically aligning nodes with their storage
location

This method of storing the active nodes from a thinned segment tree in an array is precisely
a Fenwick tree. I will also sometimes refer to it as a Fenwick array, when I want to particularly
emphasize the underlying array data structure. Although it is certainly a clever use of
space, the big question is how to implement the update and range query operations. Our
implementations of these operations for segment trees worked by recursively descending
through the tree, either directly if the tree is stored as a recursive data structure, or using
simple operations on indices if the tree is stored in an array. However, when storing the
active nodes of a thinned tree in a Fenwick array, it is not a priori obvious what operations
on array indices will correspond to moving around the tree. In order to attack this problem,
we first take a detour through a domain-specific language for two’s complement binary
values.

11

4 Two’s Complement Binary

The bit tricks usually employed to implement Fenwick trees rely on a two’s complement
representation of binary numbers, which allow positive and negative numbers to be rep-
resented in a uniform way; for example, a value consisting of all 1 bits represents −1. We
therefore turn now to developing a domain-specific language, embedded in Haskell, for
manipulating two’s complement binary representations.

First, we define a type of bits, with functions for inversion, logical conjunction, and
logical disjunction:

data Bit = O | I deriving (Eq, Ord, Show, Enum)
¬ :: Bit→ Bit
¬ = 𝜆case {O→ I; I→O}
(∧), (∨) :: Bit→ Bit→ Bit
O∧ = O
I ∧ b = b
I ∨ = I
O∨ b = b

Next, we must define bit strings, i.e. sequences of bits. Rather than fix a specific bit
width, it will be much more elegant to work with infinite bit strings.3 It is tempting to use
standard Haskell lists to represent potentially infinite bit strings, but this leads to a number
of problems. For example, equality of infinite lists is not decidable, and there is no way
in general to convert from an infinite list of bits back to an Integer—how would we know
when to stop? In fact, these practical problems stem from a more fundamental one: infinite
lists of bits are actually a bad representation for two’s complement bit strings, because
of “junk”, that is, infinite lists of bits which do not correspond to values in our intended
semantic domain. For example, cycle [I, O] is an infinite list which alternates between I and
O forever, but it does not represent a valid two’s complement encoding of an integer. Even
worse are non-periodic lists, such as the one with I at every prime index and O everywhere
else.

In fact, the bit strings we want are the eventually constant ones, that is, strings which
eventually settle down to an infinite tail of all zeros (which represent nonnegative integers)
or all ones (which represent negative integers). Every such string has a finite representation,
so directly encoding eventually constant bit strings in Haskell not only gets rid of the junk
but also leads to elegant, terminating algorithms for working with them.

data Bits where
Rep :: Bit→ Bits
Snoc :: !Bits→ Bit→ Bits

Rep b represents an infinite sequence of bit b, whereas Snoc bs b represents the bit string
bs followed by a final bit b. We use Snoc, rather than Cons, to match the way we usually
write bit strings, with the least significant bit last. Note also the use of a strictness annotation
on the Bits field of Snoc; this is to rule out infinite lists of bits using only Snoc, such as

3 Some readers may recognize infinite two’s complement bit strings as 2-adic numbers, that is, 𝑝-adic numbers
for the specific case 𝑝 = 2, but nothing in our story depends on understanding the connection.

12

bs = Snoc (Snoc bs O) I. In other words, the only way to make a non-bottom value of type
Bits is to have a finite sequence of Snoc finally terminated by Rep.

Although we have eliminated junk values, one remaining problem is that there can be
multiple distinct representations of the same value. For example, Snoc (Rep O) O and Rep O
both represent the infinite bit string containing all zeros. However, we can solve this with a
carefully constructed bidirectional pattern synonym (Pickering et al., 2016).

toSnoc :: Bits→ Bits
toSnoc (Rep a) = Snoc (Rep a) a
toSnoc as = as
pattern (:.) :: Bits→ Bit→ Bits
pattern (:.) bs b← (toSnoc→ Snoc bs b)

where
Rep b :. b′ | b ≡ b′ = Rep b
bs :. b = Snoc bs b

{-# COMPLETE (:.) #-}

Matching with the pattern (bs :. b) uses a view pattern (Erwig and Jones, 2001) to
potentially expand a Rep one step into a Snoc, so that we can pretend Bits values are always
constructed with (:.). Conversely, constructing a Bits with (:.) will do nothing if we happen
to snoc an identical bit b onto an existing Rep b. This ensures that as long as we stick to
using (:.) and never directly use Snoc, Bits values will always be normalized so that the
terminal Rep b is immediately followed by a different bit. Finally, we mark the pattern (:.)
as COMPLETE on its own, since matching on (:.) is indeed sufficient to handle every possible
input of type Bits. However, in order to obtain terminating algorithms we will often include
one or more special cases for Rep.

Let’s begin with some functions for converting Bits to and from Integer, and for displaying
Bits (intended only for testing).

toBits :: Int→ Bits
toBits n
| n ≡ 0 = Rep O
| n ≡ −1 = Rep I
| otherwise = toBits (n ‘div‘ 2) :. toEnum (n ‘mod‘ 2)

fromBits :: Bits→ Int
fromBits (Rep O) = 0
fromBits (Rep I) = −1
fromBits (bs :. b) = 2 · fromBits bs + fromEnum b
instance Show Bits where

show = reverse ◦ go
where

go (Rep b) = replicate 3 (showBit b) ++"..."
go (bs :. b) = showBit b : go bs
showBit = ("01"!!) ◦ fromEnum

13

Let’s try it out, using QuickCheck (Claessen and Hughes, 2000) to verify our conversion
functions:

ghci> Rep O :. O :. I :. O :. I

...000101

ghci> Rep I :. O :. I

...11101

ghci> toBits 26

...00011010

ghci> toBits (-30)

...11100010

ghci> fromBits (toBits (-30))

-30

ghci> quickCheck $ \x -> fromBits (toBits x) == x

+++ OK, passed 100 tests.

We can now begin implementing some basic operations on Bits. First, incrementing and
decrementing can be implemented recursively as follows:

inc :: Bits→ Bits
inc (Rep I) = Rep O
inc (bs :. O) = bs :. I
inc (bs :. I) = inc bs :. O
dec :: Bits→ Bits
dec (Rep O) = Rep I
dec (bs :. I) = bs :. O
dec (bs :. O) = dec bs :. I

The least significant bit, or LSB, of a sequence of bits can be defined as follows:

lsb :: Bits→ Bits
lsb (Rep O) = Rep O
lsb (bs :. O) = lsb bs :. O
lsb (:. I) = Rep O :. I

Note that we add a special case for Rep O to ensure that lsb is total. Technically, Rep O does
not have a least significant bit, so defining lsb (Rep O) = Rep O seems sensible.

ghci> toBits 26

"...00011010"

ghci> lsb $ toBits 26

"...00010"

ghci> toBits 24

"...00011000"

ghci> lsb $ toBits 24

"...0001000"

14

Bitwise logical conjunction can be defined straightforwardly. Note that we only need
two cases; if the finite parts of the inputs have different lengths, matching with (:.) will
automatically expand the shorter one to match the longer one.

(?) :: Bits→ Bits→ Bits
Rep x ? Rep y = Rep (x ∧ y)
(xs :. x) ? (ys :. y) = (xs ? ys) :. (x ∧ y)

Bitwise inversion is likewise straightforward.

inv :: Bits→ Bits
inv (Rep b) = Rep (¬ b)
inv (bs :. b) = inv bs :. ¬ b

The above functions follow familiar patterns. We could easily generalize to eventually
constant streams over an arbitrary element type, and then implement (?) in terms of a
generic zipWith and inv in terms of map. However, for the present purpose we do not need
the extra generality.

We implement addition with the usual carry-propagation algorithm, along with some
special cases for Rep.

(⊕) :: Bits→ Bits→ Bits
xs ⊕ Rep O = xs
Rep O ⊕ ys = ys
Rep I ⊕ Rep I = Rep I :. O
Snoc xs I ⊕ Snoc ys I = inc (xs ⊕ ys) :. O
Snoc xs x ⊕ Snoc ys y = (xs ⊕ ys) :. (x ∨ y)

It is not too hard to convince ourselves that this definition of addition is terminating and
yields correct results; but we can also be fairly confident by just trying it with QuickCheck:

ghci> quickCheck $ \x y -> fromBits (toBits x .+. toBits y) == x + y

+++ OK, passed 100 tests.

Finally, the following definition of negation is probably familiar to anyone who has
studied two’s complement arithmetic; I leave it as an exercise for the interested reader to
prove that x ⊕ neg x ≡ Rep O for all x :: Bits.

neg :: Bits→ Bits
neg = inc ◦ inv

We now have the tools to resolve the first mystery of the Fenwick tree implementation.

Theorem 4.1. For all x :: Bits,

lsb x = x ? neg x.

Proof By induction on x.

• First, if x = Rep O, it is an easy calculation to verify that lsb x = x ? neg x = Rep O.

15

• Likewise, if x = Rep I, both lsb x and x ? neg x reduce to Rep O :. I.
• If x = xs :. O, then lsb x = lsb (xs :. O) = lsb xs :. O by definition, whereas

(xs :. O) ? neg (xs :. O)
= { Definition of neg }
(xs :. O) ? inc (inv (xs :. O))

= { Definition of inv and ¬ }
(xs :. O) ? inc (inv xs :. I)

= { Definition of inc }
(xs :. O) ? (inc (inv xs) :. O)

= { Definition of ? and neg }
(xs ? neg xs) :. O

= { Induction hypothesis }
lsb xs :. O

• Next, if x = xs :. I, then lsb (xs :. I) = Rep O :. I by definition, whereas

(xs :. I) ? neg (xs :. I)
= { Definition of neg }
(xs :. I) ? inc (inv (xs :. I))

= { Definition of inv and ¬ }
(xs :. I) ? inc (inv xs :. O))

= { Definition of inc }
(xs :. I) ? (inv xs :. I)

= { Definition of ? }
(xs ? inv xs) :. I

= { Bitwise AND of 𝑥𝑠 and its inverse is Rep O }
Rep O :. I ■

For the last equality we need a lemma that xs ? inv xs = Rep O, which should be intuitively
clear and can easily be proved by induction as well.

Finally, in order to express the index conversion functions we will develop in the next
section, we need a few more things in our DSL. First, some functions to set and clear
individual bits, and to test whether particular bits are set:

setTo :: Bit→ Int→ Bits→ Bits
setTo b′ 0 (bs :.) = bs :. b′

setTo b′ k (bs :. b) = setTo b′ (k − 1) bs :. b
set, clear :: Int→ Bits→ Bits
set = setTo I
clear = setTo O
test :: Int→ Bits→ Bool
test 0 (bs :. b) = b ≡ I
test n (bs :.) = test (n − 1) bs

16

2322

11

2120

10

5

1918

9

1716

8

4

2

Fig. 14. Indexing a binary tree with 2 at the root

even, odd :: Bits→ Bool
odd = test 0
even = 𝑛𝑜𝑡 ◦ odd

The only other things we will need are left and right shift, and a generic while combinator
that iterates a given function, returning the first iterate for which a predicate is false.

shr :: Bits→ Bits
shr (bs :.) = bs
shl :: Bits→ Bits
shl = (:. O)
while :: (a→ Bool) → (a→ a) → a→ a
while p f x
| p x = while p f (f x)
| otherwise = x

5 Index Conversion

Before deriving our index conversion functions we must deal with one slightly awkward
fact. In a traditional binary tree indexing scheme, as shown in Figure 9, the root has index
1, every left child is twice its parent, and every right child is one more than twice its parent.
Recall that in a thinned segment tree, the root node and every left child are active, with
all right children being inactive. This makes the root an awkward special case—all active
nodes have an even index, except the root, which has index 1. This makes it more difficult
to check whether we are at an active node—it is not enough to simply look at the least
significant bit.

One easy way to fix this is simply to give the root index 2, and then proceed to label the
rest of the nodes using the same scheme—every left child is twice its parent, and every right
child is one more than twice its parent. This results in the indexing shown in Figure 14, as
if we had just taken the left subtree of the tree rooted at 1, and ignored the right subtree. Of
course, this means about half the possible indices are omitted—but that’s not a problem,
since we will only use these indices as an intermediate step which will eventually get fused
away.

17

23722

11

21520

610

5

19318

9

17116

28

44

82

1 2 3 4 5 6 7 8
16 8 18 4 20 10 22 2

Fig. 15. Binary tree labelled with both binary and Fenwick indexing

471546

23

451344

1422

11

431142

21

41940

1020

1210

5

39738

19

37536

618

9

35334

17

33132

216

48

84

162

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 16 34 8 36 18 38 4 40 20 42 10 44 22 46 2

Fig. 16. Binary tree labelled with both binary and Fenwick indexing

Figure 15 shows a binary tree where nodes have been numbered in two different ways: the
left side of each node shows the node’s binary tree index (with the root having index 2). The
right side of each node shows its index in the Fenwick array, if it has one (inactive nodes
simply have their right half greyed out). The table underneath shows the mapping from
Fenwick array indices (top row) to binary tree indices (bottom row). As a larger example,
Figure 16 shows the same thing on a binary tree one level deeper.

Our goal is to come up with a way to calculate the binary index for a given Fenwick
index or vice versa. Staring at the table in Figure 16, a few patterns stand out. Of course,
all the numbers in the bottom row are even, which is precisely because the binary tree is
numbered in such a way that all active nodes have an even index. Second, we can see the
even numbers 32, 34 . . . 46, in order, in all the odd positions. These are exactly the leaves of
the tree, and indeed, every other node in the Fenwick array will be a leaf from the original
tree. Alternating with these, in the even positions, are the numbers 16 8 18 4 . . . , which
correspond to all the non-leaf nodes; but these are exactly the sequence of binary indices

18

(⋎) :: [a] → [a] → [a]
[] ⋎ = []
(x : xs) ⋎ ys = x : (ys ⋎ xs)
b :: Int→ [Int]
b 0 = [2]
b n = map (2·) [2n . . 2n + 2n−1 − 1] ⋎ b (n − 1)

Fig. 17. Recurrence for sequence of binary tree indices in a Fenwick array

(a :) ! 1 = a
(: as) ! k = as ! (k − 1)

-- If |xs| ≡ |ys|:
(xs ⋎ ys) ! (2 · j) = ys ! j
(xs ⋎ ys) ! (2 · j − 1) = xs ! j

Fig. 18. Indexing and interleaving

from the bottom row of the table in Figure 15—since the internal nodes in a tree of height
4 themselves constitute a tree of height 3, with the nodes occurring in the same order.

These observations lead to the recurrence shown in Figure 17 for the sequence 𝑏𝑛

of binary indices for the nodes stored in a Fenwick array of length 2𝑛: 𝑏0 is just the
singleton sequence [2], and otherwise 𝑏𝑛 is the even numbers 2𝑛+1, 2𝑛+1 + 2, . . . , 2𝑛+1 +
2𝑛 − 2 interleaved with 𝑏𝑛−1.

We can check that this does in fact reproduce the observed sequence for 𝑛 = 4:

ghci> b 4

[32,16,34,8,36,18,38,4,40,20,42,10,44,22,46,2]

Let s ! k denote the 𝑘th item in the list 𝑠 (counting from 1), as defined in Figure 18.
The same figure also lists two easy lemmas about the interaction between indexing and
interleaving, namely, (xs ⋎ ys) ! (2 · j) = ys ! j and (xs ⋎ ys) ! (2 · j − 1) = xs ! j (as long as
xs and ys have equal lengths). With these in hand, we can define the Fenwick to binary
index conversion function as

f2b n k = b n ! k.

Of course, since 𝑏𝑛 is of length 2𝑛, this function is only defined on the range [1, 2𝑛].
We can now simplify the definition of f2b as follows. First of all, for even inputs, we have

f2b n (2 · j)
= { Definition of f2b }

b n ! (2 · j)
= { Definition of b }
(map (2·) [2n . . 2n + 2n−1 − 1] ⋎ b (n − 1)) ! (2 · j)

19

= { ⋎−! lemma }
𝑏(𝑛 − 1)! 𝑗

= { Definition of f2b }
f2b (n − 1) j.

Whereas for odd inputs,

f2b n (2 · j − 1)
= { Definition of f2b }

b n ! (2 · j − 1)
= { Definition of b }
(map (2·) [2n . . 2n + 2n−1 − 1] ⋎ b (n − 1)) ! (2 · j − 1)

= { ⋎−! lemma }
map (2·) [2n . . 2n + 2n−1 − 1] ! j

= { Definition of map, algebra }
2 · (2n + j − 1)

= { algebra }
2n+1 + 2 j − 2

Thus we have

f2b n k =

{
f2b (n − 1) (k / 2) 𝑘 even
2𝑛+1 + 𝑘 − 1 𝑘 odd

Note that when 𝑛 = 0 we must have 𝑘 = 1, and hence f2b 0 1 = 20 + 1 − 1 = 1, as required, so
this definition is valid for all 𝑛⩾ 0. Now factor 𝑘 uniquely as 2𝑎 · 𝑏 where 𝑏 is odd. Then
by induction we can see that

f2b n (2a · b) = f2b (n − a) b = 2𝑛−𝑎+1 + 𝑏 − 1.

So, in other words, computing f2b consists of repeatedly dividing by 2 (i.e. right bit shifts) as
long as the input is even, and then finally decrementing and adding a power of 2. However,
knowing what power of 2 to add at the end depends on knowing how many times we shifted.
A better way to think of it is to add 2𝑛+1 at the beginning, and then let it be shifted along with
everything else. Thus, we have the following definition of f2b′ using our Bits DSL. Defining
shift n = while even shr ◦ set n separately will make some of our proofs more compact later.

shift :: Int→ Bits→ Bits
shift n = while even shr ◦ set n
f2b′ :: Int→ Bits→ Bits
f2b′ n = dec ◦ shift (n + 1)

For example, we can verify that this produces identical results to f2b 4 on the range
[1, 24] (for convenience, we define (f === g) k = f k ≡ g k):

20

ghci> all (f2b 4 === fromBits . f2b' 4 . toBits) [1 .. 2ˆ4]

True

We now turn to deriving b2f n, which converts back from binary to Fenwick indices. b2f n
should be a left inverse to f2b n, that is, for any 𝑘 ∈ [1, 2𝑛] we should have b2f n (f2b n k) ≡ k.
If 𝑘 is an input to f2b, we have 𝑘 = 2𝑎 · 𝑏⩽ 2𝑛, and so 𝑏 − 1 < 2𝑛−𝑎. Hence, given the output
f2b n k =𝑚 = 2𝑛−𝑎+1 + 𝑏 − 1, the highest bit of 𝑚 is 2𝑛−𝑎+1, and the rest of the bits represent
𝑏 − 1. So, in general, given some 𝑚 which is the output of f2b n, we can write it uniquely
as 𝑚 = 2𝑐 + 𝑑 where 𝑑 < 2𝑐−1; then

b2f n (2c + d) = 2n−c+1 · (d + 1).

In other words, given the input 2𝑐 + 𝑑, we subtract off the highest bit 2𝑐, increment, then
left shift 𝑛 − 𝑐 + 1 times. Again, though, there is a simpler way: we can increment first (note
since 𝑑 < 2𝑐−1, incrementing cannot disturb the bit at 2𝑐), then left shift enough times to
bring the leftmost bit into position 𝑛 + 1, and finally remove it. That is:

unshift :: Int→ Bits→ Bits
unshift n = clear n ◦while (𝑛𝑜𝑡 ◦ test n) shl
b2f ′ :: Int→ Bits→ Bits
b2f ′ n = unshift (n + 1) ◦ inc

Verifying:

ghci> all (fromBits . b2f’ 4 . f2b’ 4 . toBits === id) [1 .. 2ˆ4]

True

6 Deriving Fenwick Operations

We can now finally derive the required operations on Fenwick array indices for moving
through the tree, by starting with operations on a binary indexed tree and conjugating by
conversion to and from Fenwick indices. First, in order to fuse away the resulting conversion,
we will need a few lemmas.

Lemma 6.1 (shr-inc-dec). For all bs :: Bits which are odd (that is, end with I),

• (shr ◦ dec) bs = shr bs
• (shr ◦ inc) bs = (inc ◦ shr) bs

Proof Both are immediate by definition. ■

Lemma 6.2 (while-inc-dec). The following both hold for all Bits values:

• inc ◦while odd shr = while even shr ◦ inc
• dec ◦while even shr = while odd shr ◦ dec

21

Proof Easy proof by induction on Bits. For example, for the inc case, the functions on both
sides discard consecutive 1 bits and then flip the first 0 bit to a 1. ■

Finally, we will need a lemma about shifting zero bits in and out of the right side of a
value.

Lemma 6.3 (shl-shr). For all 0 < 𝑥 < 2𝑛+2,

(while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦while even shr) x = while (𝑛𝑜𝑡 ◦ test (n + 1)) shl x.

Proof Intuitively, this says that if we first shift out all the zero bits and then left shift until
bit 𝑛 + 1 is set, we could get the same result by forgetting about the right shifts entirely;
shifting out zero bits and then shifting them back in should be the identity.

Formally, the proof is by induction on x. If x = xs :. I is odd, the equality is immediate since
while even shr x = x. Otherwise, if x = xs :. O, on the left-hand side the O is immediately
discarded by shr, whereas on the right-hand side xs :. O = shl xs, and the extra shl can be
absorbed into the while since xs < 2𝑛+1. What remains is simply the induction hypothesis.
■

With these lemmas under our belt, let’s see how to move around a Fenwick array in order
to implement update and query; we’ll begin with update. When implementing the update
operation, we need to start at a leaf and follow the path up to the root, updating all the
active nodes along the way. In fact, for any given leaf, its closest active parent is precisely
the node stored in the slot that used to correspond to that leaf (see Figure 13). So to update
index 𝑖, we just need to start at index 𝑖 in the Fenwick array, and then repeatedly find the
closest active parent, updating as we go. Recall that the imperative code for update works
this way, apparently finding the closest active parent at each step by adding the LSB of the
current index:

public void update(int i, long delta) {
for (; i < a.length; i += LSB(i)) a[i] += delta;

}

Let’s see how to derive this behavior.
To find the closest active parent of a node under a binary indexing scheme, we first move

up to the immediate parent (by dividing the index by two, i.e. performing a right bit shift);
then continue moving up to the next immediate parent as long as the current node is a right
child (i.e. has an odd index). This yields the definition:

activeParentBinary :: Bits→ Bits
activeParentBinary = while odd shr ◦ shr

This is why we used the slightly strange indexing scheme with the root having index
2—otherwise this definition would not work for any node whose active parent is the root!

Now, to derive the corresponding operation on Fenwick indices, we conjugate by con-
version to and from Fenwick indices, and compute as follows. To make the computation
easier to read, the portion being rewritten is underlined at each step.

b2f ′ n ◦ activeParentBinary ◦ f2b′ n

22

= { expand definitions }
unshift (n + 1) ◦ inc ◦while odd shr ◦ shr ◦ dec ◦ shift (n + 1)

= { Lemma 6.2 (while-inc-dec) }
unshift (n + 1) ◦while even shr ◦ inc ◦ shr ◦ dec ◦ shift (n + 1)

= { Lemma 6.1 (shr-inc-dec); shift (n + 1) x is always odd }
unshift (n + 1) ◦while even shr ◦ inc ◦ shr ◦ shift (n + 1)

= { Lemma 6.1 (shr-inc-dec) }
unshift (n + 1) ◦while even shr ◦ shr ◦ inc ◦ shift (n + 1)

= { while even shr ◦ shr = while even shr on an even input }
unshift (n + 1) ◦while even shr ◦ inc ◦ shift (n + 1)

= { Definition of unshift }
clear (n + 1) ◦while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦while even shr ◦ inc ◦ shift (n + 1)

= { Lemma 6.3 (shl-shr); definition of shift }
clear (n + 1) ◦while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦ inc ◦while even shr ◦ set (n + 1)

In the final step, since the input 𝑥 satisfies 𝑥 ⩽ 2𝑛, we have inc ◦ shift (n + 1) < 2𝑛+2, so
Lemma 6.3 applies.

Reading from right to left, the pipeline we have just computed performs the following
steps:

1. Set bit 𝑛 + 1
2. Shift out consecutive zeros until finding the least significant 1 bit
3. Increment
4. Shift zeros back in to bring the most significant bit back to position 𝑛 + 1, then clear

it.

Intuitively, this does look a lot like adding the LSB! In general, to find the LSB, one
must shift through consecutive 0 bits until finding the first 1; the question is how to keep
track of how many 0 bits were shifted on the way. The lsb function itself keeps track via the
recursion stack; after finding the first 1 bit, the recursion stack unwinds and re-snocs all the
0 bits recursed through on the way. The above pipeline represents an alternative approach:
set bit 𝑛 + 1 as a “sentinel” to keep track of how much we have shifted; right shift until the
first 1 is literally in the ones place, at which point we increment; and then shift all the 0 bits
back in by doing left shifts until the sentinel bit gets back to the 𝑛 + 1 place. One example
of this process is illustrated in Figure 19. Of course, this only works for values that are
sufficiently small that the sentinel bit will not be disturbed throughout the operation.

To make this more formal, we begin by defining a helper function atLSB, which does
an operation “at the LSB”, that is, it shifts out 0 bits until finding a 1, applies the given
function, then restores the 0 bits.

23

00011100
unset sentinel bit

00011101
shift left

01110100
increment

10110100
shift right

00101101
set sentinel bit

00101100

Fig. 19. Adding LSB with a sentinel bit + shifts

atLSB :: (Bits→ Bits) → Bits→ Bits
atLSB (Rep O) = Rep O
atLSB f (bs :. O) = atLSB f bs :. O
atLSB f bs = f bs

Lemma 6.4 (add-lsb). For all x :: Bits, x + lsb x = atLSB inc x and x − lsb x = atLSB dec x.

Proof Straightforward induction on 𝑥. ■

We can formally relate the “shifting with a sentinel” scheme to the use of atLSB, with
the following (admittedly rather technical) lemma:

Lemma 6.5 (sentinel). Let 𝑛⩾ 1 and let f :: Bits→ Bits be a function such that

1. (f ◦ set (n + 1)) x = (set (n + 1) ◦ f) x for any 0 < 𝑥 < 2𝑛, and
2. f x < 2𝑛+1 for any 0 < 𝑥 < 2𝑛 + 2𝑛−1.

Then for all 0 < 𝑥 < 2𝑛,

(unshift (n + 1) ◦ f ◦ shift (n + 1)) x = atLSB f x.

The proof is rather tedious and not all that illuminating, so we omit it here (a detailed
proof can be found in an appendix). However, we do note that both inc and dec fit the criteria
for f : incrementing or decrementing some 0 < 𝑥 < 2𝑛 cannot affect the (𝑛 + 1)st bit as long
as 𝑛⩾ 1, and the result of incrementing or decrementing a number less than 2𝑛 + 2𝑛−1 will
be a number less than 2𝑛+1. We can now put all the pieces together show that adding the
LSB at each step is the correct way to implement update.

24

Fig. 20. Moving up a segment tree to find successive prefix segments

Theorem 6.6. Adding the LSB is the correct way to move up a Fenwick-indexed tree to the
nearest active parent, that is,

activeParentFenwick = b2f ′ n ◦ activeParentBinary ◦ f2b′ n = 𝜆x→ x + lsb x

everywhere on the range [1, 2𝑛). (We exclude 2𝑛 since it corresponds to the root of the tree
under a Fenwick indexing scheme.)

Proof

b2f ′ n ◦ activeParentBinary ◦ f2b′ n
= { Previous calculation }

unshift (n + 1) ◦ inc ◦ shift (n + 1)
= { Lemma 6.5 (sentinel) }

atLSB inc
= { Lemma 6.4 (add-lsb) }
𝜆x→ x + lsb x ■

We can carry out a similar process to derive an implementation for prefix query (which
supposedly involves subtracting the LSB). Again, if we want to compute the sum of [1, 𝑗],
we can start at index 𝑗 in the Fenwick array, which stores the sum of the unique segment
ending at 𝑗 . If the node at index 𝑗 stores the segment [𝑖, 𝑗], we next need to find the unique
node storing a segment that ends at 𝑖 − 1. We can do this repeatedly, adding up segments
as we go.

Staring at Figure 20 for inspiration, we can see that what we want to do is find the left
sibling of our closest inactive parent, that is, we go up until finding the first ancestor which
is a right child, then go to its left sibling. Under a binary indexing scheme, this can be
implemented simply as:

prevSegmentBinary :: Bits→ Bits
prevSegmentBinary = dec ◦while even shr

25

Theorem 6.7. Subtracting the LSB is the correct way to move up a Fenwick-indexed tree
to the to active node covering the segment previous to the current one, that is,

prevSegmentFenwick = b2f ′ n ◦ prevSegmentBinary ◦ f2b′ n = 𝜆x→ x − lsb x

everywhere on the range [1, 2𝑛).

Proof

b2f ′ n ◦ prevSegmentBinary ◦ f2b′ n
= { expand definitions }

unshift (n + 1) ◦ inc ◦ dec ◦while even shr ◦ dec ◦ shift (n + 1)
= { inc ◦ dec = id }

unshift (n + 1) ◦while even shr ◦ dec ◦ shift (n + 1)
= { Definition of unshift }

clear (n + 1) ◦while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦while even shr ◦ dec ◦ shift (n + 1)
= { Lemma 6.3 (shl-shr) }

clear (n + 1) ◦while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦ dec ◦ shift (n + 1)
= { Definition of unshift }

unshift (n + 1) ◦ dec ◦ shift (n + 1)
= { Lemma 6.5 (sentinel) }

atLSB dec
= { Lemma 6.4 (add-lsb) }
𝜆x→ x − lsb x

■

7 Conclusion

Historically, to my knowledge, Fenwick trees were not actually developed as an optimiza-
tion of segment trees as presented here. This has merely been a fictional—but hopefully
illuminating—alternate history of ideas, highlighting the power of functional thinking,
domain-specific languages, and equational reasoning to explore relationships between dif-
ferent structures and algorithms. As future work, it would be interesting to explore some of
the mentioned generalizations of segment trees, to see whether one can derive Fenwick-like
structures that support additional operations.

Acknowledgments

Thanks to the anonymous JFP reviewers for their helpful feedback, which resulted in a
much improved presentation. Thanks also to Penn PL Club for the opportunity to present
an early version of this work.

Conflicts of Interest. None

26

References

Apfelmus, H. (2009) Monoids and finger trees. https://apfelmus.nfshost.com/articles/
monoid-fingertree.html. [Online; accessed 10-Jun-2024].

Bird, R. & Gibbons, J. (2002) Arithmetic coding with folds and unfolds. In International School on
Advanced Functional Programming. Springer. pp. 1–26.

Claessen, K. & Hughes, J. (2000) Quickcheck: a lightweight tool for random testing of haskell
programs. Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming. pp. 268–279.

Erwig, M. & Jones, S. P. (2001) Pattern guards and transformational patterns. Electronic Notes in
Theoretical Computer Science. 41(1), 3.

Fenwick, P. M. (1994) A new data structure for cumulative frequency tables. Software: Practice and
experience. 24(3), 327–336.

Halim, S., Halim, F. & Effendy, S. (2020) Competitive Programming 4: The Lower Bound of
Programming Contests in the 2020s. Lulu Press.

Hinze, R. & Paterson, R. (2006) Finger trees: A simple general-purpose data structure. Journal of
Functional Programming. 16(2), 197–217.

Ivanov, M. (2011) Segment tree. https://cp-algorithms.com/data_structures/segment_
tree.html. [Online; accessed 03-Jun-2024].

Pickering, M., Érdi, G., Peyton Jones, S. & Eisenberg, R. A. (2016) Pattern synonyms. Proceedings
of the 9th International Symposium on Haskell. New York, NY, USA. Association for Computing
Machinery. p. 80–91.

Rissanen, J. & Langdon, G. G. (1979) Arithmetic coding. IBM Journal of research and development.
23(2), 149–162.

Ryabko, B. Y. (1989) A fast on-line code. Doklady Akademii Nauk. Russian Academy of Sciences.
pp. 548–552.

Wikipedia contributors. (2024) Segment tree — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Segment_tree. [Online; accessed 03-Jun-2024].

Appendix

For completeness, we include here a proof of Lemma 6.5, which shows that for functions 𝑓

satisfying suitable conditions, atLSB f has the same effect as the “sentinel scheme” where
we set a sentinel bit, shift to bring the LSB to the ones place, perform 𝑓 , then shift back.
To complete the proof of this lemma we first need a few more.

Lemma 7.1. clear (n + 1) ◦ shl = shl ◦ clear n

Proof Immediate by a simple computation. ■

Lemma 7.2. For all 𝑛⩾ 0 and 0 < 𝑥 < 2𝑛+1,

(while (𝑛𝑜𝑡 ◦ test (n + 1)) shl) x = (shl ◦while (𝑛𝑜𝑡 ◦ test n) shl) x.

Proof Intuitively, if 𝑥 is small enough, we can either keep shifting left until bit 𝑛 + 1 is set,
or we can shift left until bit 𝑛 is set and then shift left one additional time.

Formally, the proof is by induction on the size of 2𝑛+1 − 𝑥. First, if 2𝑛 ⩽ 𝑥 < 2𝑛+1, then
bit 𝑛 of 𝑥 must be 1, and both sides will be equal to shl x. Otherwise, suppose 𝑥 < 2𝑛. Then

https://apfelmus.nfshost.com/articles/monoid-fingertree.html
https://apfelmus.nfshost.com/articles/monoid-fingertree.html
https://cp-algorithms.com/data_structures/segment_tree.html
https://cp-algorithms.com/data_structures/segment_tree.html
https://en.wikipedia.org/wiki/Segment_tree
https://en.wikipedia.org/wiki/Segment_tree

27

(while (𝑛𝑜𝑡 ◦ test (n + 1)) shl) x
= { 𝑥 < 2𝑛+1 }
(while (𝑛𝑜𝑡 ◦ test (n + 1)) shl) (shl x)

= { Induction hypothesis, since 2𝑛+1 − shl x < 2𝑛+1 − 𝑥 }
(shl ◦while (𝑛𝑜𝑡 ◦ test n) shl) (shl x)

= { 𝑥 < 2𝑛 }
(shl ◦while (𝑛𝑜𝑡 ◦ test n) shl) x ■

Now we can finally prove Lemma 6.5, which we restate here for convenience.

Lemma 6.5 (sentinel). Let 𝑛⩾ 1 and let f :: Bits→ Bits be a function such that

1. (f ◦ set (n + 1)) x = (set (n + 1) ◦ f) x for any 0 < 𝑥 < 2𝑛, and
2. f x < 2𝑛+1 for any 0 < 𝑥 < 2𝑛 + 2𝑛−1.

Then for all 0 < 𝑥 < 2𝑛,

(unshift (n + 1) ◦ f ◦ shift (n + 1)) x = atLSB f x.

Proof By induction on 𝑥. First, suppose x = xs :. I. In that case, atLSB f (xs :. I) = f (xs :. I),
and

(unshift (n + 1) ◦ f ◦ shift (n + 1)) (xs :. I)
= { Definition of shift }
(unshift (n + 1) ◦ f ◦while even shr ◦ set (n + 1)) (xs :. I)

= { Definition of set }
(unshift (n + 1) ◦ f ◦while even shr) (set n xs :. I)

= { while even f y = y on odd y }
(unshift (n + 1) ◦ f) (set n xs :. I)

= { Definition of set }
(unshift (n + 1) ◦ f ◦ set (n + 1)) (xs :. I)

= { f commutes with set (n + 1) on input < 2𝑛 }
(unshift (n + 1) ◦ set (n + 1) ◦ f) (xs :. I)

= { Definition of unshift }
(clear (n + 1) ◦while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦ set (n + 1) ◦ f) (xs :. I)

= { 𝑛𝑜𝑡 ◦ test (n + 1) is false on output of set (n + 1) }
(clear (n + 1) ◦ set (n + 1) ◦ f) (xs :. I)

= { clear (n + 1) and set (n + 1) are inverse, since f x < 2𝑛+1 }
f (xs :. I)

Next, if x = xs :. O, atLSB f (xs :. O) = atLSB f xs :. O. For the left-hand side, we can
compute:

(unshift (n + 1) ◦ f ◦ shift (n + 1)) (xs :. O)
= { Definition of shift }

28

(unshift (n + 1) ◦ f ◦while even shr ◦ set (n + 1)) (xs :. O)
= { Definition of set }
(unshift (n + 1) ◦ f ◦while even shr) (set n xs :. O)

= { Definition of while and even }
(unshift (n + 1) ◦ f ◦while even shr ◦ set n) xs

= { Definition of unshift and shift }
(clear (n + 1) ◦while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦ f ◦ shift n) xs

At this point we would like to rewrite while (𝑛𝑜𝑡 ◦ test (n + 1)) shl by pulling out one
iteration of shl. Since x = xs :. O < 2𝑛, we have xs < 2𝑛−1 and shift n xs < 2𝑛 + 2𝑛−1 (recall
that shift n = while even shr ◦ set n sets the 𝑛th bit and then can only make the number
smaller by doing repeated right shifts). Hence by assumption f (shift n xs) < 2𝑛+1, and we
may apply Lemma 7.2.

(clear (n + 1) ◦while (𝑛𝑜𝑡 ◦ test (n + 1)) shl ◦ f ◦ shift n) xs
= { Lemma 7.2 }
(clear (n + 1) ◦ shl ◦while (𝑛𝑜𝑡 ◦ test n) shl ◦ f ◦ shift n) xs

= { Lemma 7.1 }
(shl ◦ clear n ◦while (𝑛𝑜𝑡 ◦ test n) shl ◦ f ◦ shift n) xs

= { Definition of unshift }
(shl ◦ unshift n ◦ f ◦ shift n) xs

= { Induction hypothesis }
shl (atLSB f xs)

= { Definition of shl }
atLSB f xs :. O ■

	Introduction
	Segment Trees
	Fenwick trees
	Two's Complement Binary
	Index Conversion
	Deriving Fenwick Operations
	Conclusion

