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This is a bijection. It matches up the elements of these two blue
sets in such a way that each element is matched with exactly one
element from the other set.
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And here is another bijection.
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Given these two bijections, we can add them by running them in
parallel, so to speak. That is, I take the disjoint union of the dark
blue and dark orange sets, and the disjoint union of the light blue and
light orange sets, and I get a new bijection between these disjoint
unions, which does f on one side and g on the other.
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Ground rules

I need to stop at this point to establish some ground rules for the
rest of my talk.



1. “type” = “set”

2. everything is finite∗

∗ except for that one infinite thing
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Rule number 1: types and sets are the same thing. I am going to
use these words interchangeably. Rule number 2: everything is finite.
OK? After my talk we can all go back to our comfortable world where
things can be infinite, and types and sets are definitely not the same.
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Rule number 1: types and sets are the same thing. I am going to
use these words interchangeably. Rule number 2: everything is finite.
OK? After my talk we can all go back to our comfortable world where
things can be infinite, and types and sets are definitely not the same.
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Subtraction

Now let’s talk about subtraction.
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OK. Now, suppose we start with a bijection between two sum types.
So here is a bijection h from, say, a + b, to a′ + b′. Notice that
h does not send every element in the top left to the top right, nor
bottom left to bottom right. It can arbitrarily “mix” top and bottom.
Put another way, h is not the sum of two bijections on the blue and
orange sets.
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Now let’s take our same g again.
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Since we can add two bijections, the natural question is—can we
subtract them as well? Now at this point it may not even be clear
what this should mean, especially since we just said h is not a sum of
bijections. One thing we can say for sure is that the blue sets must
have the same size, since h shows that the disjoint unions have the
same size, and g shows that the orange sets have the same size. So
there must exist some bijection between the blue sets. But this isn’t
good enough for me. I don’t just want to know they have the same
size, I want a concrete matching between the blue sets that I can
actually compute.
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Background

Before I explain the answer, I want to stop to give a bit of context.



Garsia-Milne (1981), Gordon (1983)
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The problem was first solved by Garsia and Milne, and later in a
different form by Gordon. Both actually proved much more general
things than what we will talk about here; ask me later if you’re
interested.
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Ping-pong

So now I want to explain the solution.
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Let’s start by looking at h again.
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If we start with this element and follow h across. . .



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

. . . we end up here. This is where we want to be—remember, we’re
trying to match up the blue sets.
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So we decide to match up these two elements.
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Similarly, we can match these two as well.
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What about this one? Of course there’s only one element left we
can pair it with, but let’s see if we can figure out a principled reason
to choose it.
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When we follow h across, we end up in the “wrong” set. What do
we do from here?
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Well, remember that we have another bijection, g , which connects
the orange sets. Let’s superimpose it here. I’ve written g , denoting
the inverse of g , to emphasize that (as you may have already figured
out) we’re going to follow it backwards.
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So we follow g backwards and of course we end up in the dark orange
set.
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But now we can follow h again, to over here. This still isn’t where
we want to be. . .
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. . . so we follow g backwards again, to here. . .
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Then we follow h again, and finally we end up in the light blue set!
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So we do in fact match up these elements. And we got there by sort
of “ping-ponging” back and forth between the two sides, alternately
following h and g .
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Overall, then, this is the bijection we get when we subtract g from h.
Since everything is a bijection, and the sets are finite, we can’t keep
ping-ponging forever, we can’t get stuck, and two different elements
on the left can never end up mapping to the same element on the
right.
OK, so let’s see some code!



pingpong :: (Either a b → Either a′ b′)→ (b′ → b)→ (a→ a′)
pingpong h g’ = untilLeft (h ◦ Right ◦ g’) ◦ h ◦ Left
untilLeft :: (b′ → a′ + b′)→ (a′ + b′ → a′)
untilLeft step ab = case ab of

Left a′ → a′

Right b′ → untilLeft step (step b′)
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. . . yuck, right? This is just about the prettiest I can make it. There
are a lot of problems here. There’s a lot of noise injecting into
and projecting from sum types. We’re following individual elements
rather than building bijections at a high level. And this is only one
direction of the bijection! We would need to basically duplicate this
code to handle the other direction.
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So let’s get rid of that ugly code. Ah, much better! So, Kenny and I
set out to see if we could find a way to construct this algorithm in a
high-level, point-free way. Why? Partly just as a fun challenge, and
also to gain insight into the algorithm and the related combinatorics.
We also hoped it could be a first step towards building a formal
computer proof.



Guðmundsson (2017)
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At the time we started working on this, there were no formal com-
puter proofs that we knew of; last year Guðmundsson completed a
formal proof in Agda for his master’s thesis, though it is pretty te-
dious, and low-level; turning our approach into a higher-level formal
proof is future work.
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High-level ping-pong

So let’s play some high-level ping-pong.
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Our first step is to unfold the ping-ponging process. Instead of think-
ing of h and g being superimposed and watching elements bounce
back and forth. . .
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. . . we can visualize time using a spatial dimension, and unfold the
process into a sort of “trace” through multiple copies of the sets. I
have highlighted the paths taken by each of the three elements.
Not only is this a nicer way to visualize the process, but it gives us an
idea. This trace is built out of a bunch of bijections glued together.
Maybe we can build an entire trace in a high-level, compositional
way, and then extract the bijection we want at the end.
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So what is a bijection? We can represent a bijection between types
a and b simply as a pair of functions from a → b and b → a; of
course we also require that the two functions compose to the identity.
There is an id bijection and we can compose them, that is, they form
a category.
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Going back to this for a minute, we can see that bijections aren’t
enough. . . notice these gaps. The types don’t match up, since g is
only defined on the orange sets. So we introduce the notion of partial
bijections.
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It turns out that bijections aren’t enough. We also need partial
bijections, which are like bijections except that they may be undefined
in some places.
Formally, we can define a partial bijection as a pair of partial functions
in opposite directions. We can do all the same things with them as
with total bijections, like compose them in sequence and in parallel.
The composition works like. . .
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So now we can finally put the pieces together to construct a trace.
We compose the empty partial bijection in parallel with the inverse
of g for the intermediate steps; then we compose an alternating
sequence of this with h. Incidentally, I will use semicolon to indicate
“backwards” composition, so values flow from left to right, in the
same direction as the diagrams.
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Unfortunately, this doesn’t actually work! First, how do we know
how many times to iterate?
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And even if we did know how many times to iterate, it still doesn’t
work: the actual result of composing this trace is a partial bijection
containing only the purple path. The problem is that the other paths
stop too early, so they get lost. Remember that an edge will show up
in the final composed output only if there is a complete, unbroken
path all the way from one side to the other!
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These are all compatible (see paper), so if we take the infinite merge
(as long as it is lazy enough), we get exactly what we wanted!
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It is a straightforward exercise to write a program to ładdž two bijectionsÐresulting in a bijection between
two sum types, which runs the first bijection on elements from the left summand and the second bijection on
the right. It is much less obvious how to łsubtractž one bijection from another. This problem has been studied
in the context of combinatorics, with several computational principles known for producing the łdifferencež
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There’s a bunch more in the paper. For example, this infinite merge
solution works but suffers from quadratic performance for two differ-
ent reasons, and we show how to make the performance linear again
without too much modification to the code.
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So, thanks very much for listening, and go read the paper!
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