
What’s the Difference?
A Functional Pearl on Subtracting Bijections

Brent Yorgey, Hendrix College
Kenny Foner, University of Pennsylvania

ICFP 2018 St. Louis



f



f

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

This is a bijection. It matches up the elements of these two blue
sets in such a way that each element is matched with exactly one
element from the other set.



g



g

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

And here is another bijection.



f + g

=

g
+

f



f + g

=

g
+

f
20

18
-1

0-
20

What’s the Difference? A Functional Pearl on
Subtracting Bijections

Given these two bijections, we can add them by running them in
parallel, so to speak. That is, I take the disjoint union of the dark
blue and dark orange sets, and the disjoint union of the light blue and
light orange sets, and I get a new bijection between these disjoint
unions, which does f on one side and g on the other.



Ground rules



Ground rules
20

18
-1

0-
20

What’s the Difference? A Functional Pearl on
Subtracting Bijections

Ground rules

I need to stop at this point to establish some ground rules for the
rest of my talk.



1. “type” = “set”

2. everything is finite∗

∗ except for that one infinite thing



1. “type” = “set”

2. everything is finite∗

∗ except for that one infinite thing

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Rule number 1: types and sets are the same thing. I am going to
use these words interchangeably. Rule number 2: everything is finite.
OK? After my talk we can all go back to our comfortable world where
things can be infinite, and types and sets are definitely not the same.



1. “type” = “set”

2. everything is finite∗

∗ except for that one infinite thing



1. “type” = “set”

2. everything is finite∗

∗ except for that one infinite thing

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Rule number 1: types and sets are the same thing. I am going to
use these words interchangeably. Rule number 2: everything is finite.
OK? After my talk we can all go back to our comfortable world where
things can be infinite, and types and sets are definitely not the same.



1. “type” = “set”

2. everything is finite∗

∗ except for that one infinite thing



1. “type” = “set”

2. everything is finite∗

∗ except for that one infinite thing

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Rule number 1: types and sets are the same thing. I am going to
use these words interchangeably. Rule number 2: everything is finite.
OK? After my talk we can all go back to our comfortable world where
things can be infinite, and types and sets are definitely not the same.



Subtraction



Subtraction
20

18
-1

0-
20

What’s the Difference? A Functional Pearl on
Subtracting Bijections

Subtraction

Now let’s talk about subtraction.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

OK. Now, suppose we start with a bijection between two sum types.
So here is a bijection h from, say, a + b, to a′ + b′. Notice that
h does not send every element in the top left to the top right, nor
bottom left to bottom right. It can arbitrarily “mix” top and bottom.
Put another way, h is not the sum of two bijections on the blue and
orange sets.



g



g

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Now let’s take our same g again.



?=

g
−

h



?=

g
−

h

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Since we can add two bijections, the natural question is—can we
subtract them as well? Now at this point it may not even be clear
what this should mean, especially since we just said h is not a sum of
bijections. One thing we can say for sure is that the blue sets must
have the same size, since h shows that the disjoint unions have the
same size, and g shows that the orange sets have the same size. So
there must exist some bijection between the blue sets. But this isn’t
good enough for me. I don’t just want to know they have the same
size, I want a concrete matching between the blue sets that I can
actually compute.



Background



Background
20

18
-1

0-
20

What’s the Difference? A Functional Pearl on
Subtracting Bijections

Background

Before I explain the answer, I want to stop to give a bit of context.



Garsia-Milne (1981), Gordon (1983)



Garsia-Milne (1981), Gordon (1983)

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

The problem was first solved by Garsia and Milne, and later in a
different form by Gordon. Both actually proved much more general
things than what we will talk about here; ask me later if you’re
interested.



Ping-pong



Ping-pong
20

18
-1

0-
20

What’s the Difference? A Functional Pearl on
Subtracting Bijections

Ping-pong

So now I want to explain the solution.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Let’s start by looking at h again.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

If we start with this element and follow h across. . .



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

. . . we end up here. This is where we want to be—remember, we’re
trying to match up the blue sets.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

So we decide to match up these two elements.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Similarly, we can match these two as well.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

What about this one? Of course there’s only one element left we
can pair it with, but let’s see if we can figure out a principled reason
to choose it.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

When we follow h across, we end up in the “wrong” set. What do
we do from here?



g



g20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Well, remember that we have another bijection, g , which connects
the orange sets. Let’s superimpose it here. I’ve written g , denoting
the inverse of g , to emphasize that (as you may have already figured
out) we’re going to follow it backwards.



g



g20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

So we follow g backwards and of course we end up in the dark orange
set.



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

But now we can follow h again, to over here. This still isn’t where
we want to be. . .



g



g20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

. . . so we follow g backwards again, to here. . .



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Then we follow h again, and finally we end up in the light blue set!



h



h20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

So we do in fact match up these elements. And we got there by sort
of “ping-ponging” back and forth between the two sides, alternately
following h and g .



=

g
−

h



=

g
−

h

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Overall, then, this is the bijection we get when we subtract g from h.
Since everything is a bijection, and the sets are finite, we can’t keep
ping-ponging forever, we can’t get stuck, and two different elements
on the left can never end up mapping to the same element on the
right.
OK, so let’s see some code!



pingpong :: (Either a b → Either a′ b′)→ (b′ → b)→ (a→ a′)
pingpong h g’ = untilLeft (h ◦ Right ◦ g’) ◦ h ◦ Left
untilLeft :: (b′ → a′ + b′)→ (a′ + b′ → a′)
untilLeft step ab = case ab of

Left a′ → a′

Right b′ → untilLeft step (step b′)



pingpong :: (Either a b → Either a′ b′)→ (b′ → b)→ (a→ a′)
pingpong h g’ = untilLeft (h ◦ Right ◦ g’) ◦ h ◦ Left
untilLeft :: (b′ → a′ + b′)→ (a′ + b′ → a′)
untilLeft step ab = case ab of

Left a′ → a′

Right b′ → untilLeft step (step b′)

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

. . . yuck, right? This is just about the prettiest I can make it. There
are a lot of problems here. There’s a lot of noise injecting into
and projecting from sum types. We’re following individual elements
rather than building bijections at a high level. And this is only one
direction of the bijection! We would need to basically duplicate this
code to handle the other direction.



pingpong :: (Either a b → Either a′ b′)→ (b′ → b)→ (a→ a′)
pingpong h g’ = untilLeft (h ◦ Right ◦ g’) ◦ h ◦ Left
untilLeft :: (b′ → a′ + b′)→ (a′ + b′ → a′)
untilLeft step ab = case ab of

Left a′ → a′

Right b′ → untilLeft step (step b′)



pingpong :: (Either a b → Either a′ b′)→ (b′ → b)→ (a→ a′)
pingpong h g’ = untilLeft (h ◦ Right ◦ g’) ◦ h ◦ Left
untilLeft :: (b′ → a′ + b′)→ (a′ + b′ → a′)
untilLeft step ab = case ab of

Left a′ → a′

Right b′ → untilLeft step (step b′)

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

. . . yuck, right? This is just about the prettiest I can make it. There
are a lot of problems here. There’s a lot of noise injecting into
and projecting from sum types. We’re following individual elements
rather than building bijections at a high level. And this is only one
direction of the bijection! We would need to basically duplicate this
code to handle the other direction.





20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

So let’s get rid of that ugly code. Ah, much better! So, Kenny and I
set out to see if we could find a way to construct this algorithm in a
high-level, point-free way. Why? Partly just as a fun challenge, and
also to gain insight into the algorithm and the related combinatorics.
We also hoped it could be a first step towards building a formal
computer proof.



Guðmundsson (2017)



Guðmundsson (2017)

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

At the time we started working on this, there were no formal com-
puter proofs that we knew of; last year Guðmundsson completed a
formal proof in Agda for his master’s thesis, though it is pretty te-
dious, and low-level; turning our approach into a higher-level formal
proof is future work.



High-level ping-pong



High-level ping-pong
20

18
-1

0-
20

What’s the Difference? A Functional Pearl on
Subtracting Bijections

High-level ping-pong

So let’s play some high-level ping-pong.



h, g



h, g20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Our first step is to unfold the ping-ponging process. Instead of think-
ing of h and g being superimposed and watching elements bounce
back and forth. . .



hghgh



hghgh

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

. . . we can visualize time using a spatial dimension, and unfold the
process into a sort of “trace” through multiple copies of the sets. I
have highlighted the paths taken by each of the three elements.
Not only is this a nicer way to visualize the process, but it gives us an
idea. This trace is built out of a bunch of bijections glued together.
Maybe we can build an entire trace in a high-level, compositional
way, and then extract the bijection we want at the end.





20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

So what is a bijection? We can represent a bijection between types
a and b simply as a pair of functions from a → b and b → a; of
course we also require that the two functions compose to the identity.
There is an id bijection and we can compose them, that is, they form
a category.



hghgh



hghgh

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Going back to this for a minute, we can see that bijections aren’t
enough. . . notice these gaps. The types don’t match up, since g is
only defined on the orange sets. So we introduce the notion of partial
bijections.



=



=
20

18
-1

0-
20

What’s the Difference? A Functional Pearl on
Subtracting Bijections

It turns out that bijections aren’t enough. We also need partial
bijections, which are like bijections except that they may be undefined
in some places.
Formally, we can define a partial bijection as a pair of partial functions
in opposite directions. We can do all the same things with them as
with total bijections, like compose them in sequence and in parallel.
The composition works like. . .



h⊥+ gh⊥+ gh



h⊥+ gh⊥+ gh

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

So now we can finally put the pieces together to construct a trace.
We compose the empty partial bijection in parallel with the inverse
of g for the intermediate steps; then we compose an alternating
sequence of this with h. Incidentally, I will use semicolon to indicate
“backwards” composition, so values flow from left to right, in the
same direction as the diagrams.



h⊥+ gh⊥+ gh⊥+ gh⊥+ gh



h⊥+ gh⊥+ gh⊥+ gh⊥+ gh

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

Unfortunately, this doesn’t actually work! First, how do we know
how many times to iterate?



=

h⊥+ gh⊥+ gh



=

h⊥+ gh⊥+ gh

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

And even if we did know how many times to iterate, it still doesn’t
work: the actual result of composing this trace is a partial bijection
containing only the purple path. The problem is that the other paths
stop too early, so they get lost. Remember that an edge will show up
in the final composed output only if there is a complete, unbroken
path all the way from one side to the other!



t

=⇒

h⊥+ gh⊥+ gh

t

=⇒

h⊥+ gh

t

=⇒

h



t

=⇒

h⊥+ gh⊥+ gh

t

=⇒

h⊥+ gh

t

=⇒

h

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

These are all compatible (see paper), so if we take the infinite merge
(as long as it is lazy enough), we get exactly what we wanted!



101

What’s the Difference?
A Functional Pearl on Subtracting Bijections

BRENT A. YORGEY, Hendrix College, USA
KENNETH FONER, University of Pennsylvania, USA

It is a straightforward exercise to write a program to ładdž two bijectionsÐresulting in a bijection between
two sum types, which runs the first bijection on elements from the left summand and the second bijection on
the right. It is much less obvious how to łsubtractž one bijection from another. This problem has been studied
in the context of combinatorics, with several computational principles known for producing the łdifferencež
of two bijections. We consider the problem from a computational and algebraic perspective, showing how
to construct such bijections at a high level, avoiding pointwise reasoning or being forced to construct the
forward and backward directions separatelyÐwithout sacrificing performance.

CCS Concepts: · Mathematics of computing → Combinatorics; · Software and its engineering →
Functional languages;

Additional Key Words and Phrases: bijection, difference

ACM Reference Format:
Brent A. Yorgey and Kenneth Foner. 2018. What’s the Difference? A Functional Pearl on Subtracting Bijections.
Proc. ACM Program. Lang. 2, ICFP, Article 101 (September 2018), 21 pages. https://doi.org/10.1145/3236796

1 INTRODUCTION
Suppose we have four finite types (sets) A,B,A′, and B′ with bijections f : A↔ A′ and д : B ↔ B′.
Then, as illustrated1 in Figure 1, we can ładdž these bijections to produce a new bijection

h : A + B ↔ A′ + B′,

where + denotes a sum type (or a disjoint union of sets). We take h to be the function which applies
f on elements of A, and д on elements of B, which we denote as h = f + д. In Haskell, we could
encode this as follows:
type (+) = Either

(+) :: (a→ a′) → (b→ b′) → (a + b→ a′ + b′)
(f + g) (Left x) = Left (f x)
(f + g) (Right y) = Right (g y)
(Note we are punning on (+) at the value and type levels. This function already lives in the standard
Data.Bifunctor module with the name bimapÐin the Bifunctor Either instanceÐbut for our
1We recommend viewing this paper as a PDF or printing it on a color printer, though it should still be comprehensible
in black and white. The colors have been chosen to remain distinguishable to individuals with common forms of color
blindness.

Authors’ addresses: Brent A. Yorgey, Department of Mathematics and Computer Science, Hendrix College, Conway, AR,
USA, yorgey@hendrix.edu; Kenneth Foner, University of Pennsylvania, Philadelphia, PA, USA, kfoner@seas.upenn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART101
https://doi.org/10.1145/3236796

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 101. Publication date: September 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.



101

What’s the Difference?
A Functional Pearl on Subtracting Bijections

BRENT A. YORGEY, Hendrix College, USA
KENNETH FONER, University of Pennsylvania, USA

It is a straightforward exercise to write a program to ładdž two bijectionsÐresulting in a bijection between
two sum types, which runs the first bijection on elements from the left summand and the second bijection on
the right. It is much less obvious how to łsubtractž one bijection from another. This problem has been studied
in the context of combinatorics, with several computational principles known for producing the łdifferencež
of two bijections. We consider the problem from a computational and algebraic perspective, showing how
to construct such bijections at a high level, avoiding pointwise reasoning or being forced to construct the
forward and backward directions separatelyÐwithout sacrificing performance.

CCS Concepts: · Mathematics of computing → Combinatorics; · Software and its engineering →
Functional languages;

Additional Key Words and Phrases: bijection, difference

ACM Reference Format:
Brent A. Yorgey and Kenneth Foner. 2018. What’s the Difference? A Functional Pearl on Subtracting Bijections.
Proc. ACM Program. Lang. 2, ICFP, Article 101 (September 2018), 21 pages. https://doi.org/10.1145/3236796

1 INTRODUCTION
Suppose we have four finite types (sets) A,B,A′, and B′ with bijections f : A↔ A′ and д : B ↔ B′.
Then, as illustrated1 in Figure 1, we can ładdž these bijections to produce a new bijection

h : A + B ↔ A′ + B′,

where + denotes a sum type (or a disjoint union of sets). We take h to be the function which applies
f on elements of A, and д on elements of B, which we denote as h = f + д. In Haskell, we could
encode this as follows:
type (+) = Either

(+) :: (a→ a′) → (b→ b′) → (a + b→ a′ + b′)
(f + g) (Left x) = Left (f x)
(f + g) (Right y) = Right (g y)
(Note we are punning on (+) at the value and type levels. This function already lives in the standard
Data.Bifunctor module with the name bimapÐin the Bifunctor Either instanceÐbut for our
1We recommend viewing this paper as a PDF or printing it on a color printer, though it should still be comprehensible
in black and white. The colors have been chosen to remain distinguishable to individuals with common forms of color
blindness.

Authors’ addresses: Brent A. Yorgey, Department of Mathematics and Computer Science, Hendrix College, Conway, AR,
USA, yorgey@hendrix.edu; Kenneth Foner, University of Pennsylvania, Philadelphia, PA, USA, kfoner@seas.upenn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART101
https://doi.org/10.1145/3236796

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 101. Publication date: September 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

There’s a bunch more in the paper. For example, this infinite merge
solution works but suffers from quadratic performance for two differ-
ent reasons, and we show how to make the performance linear again
without too much modification to the code.



=

g
−

h



=

g
−

h

20
18

-1
0-

20
What’s the Difference? A Functional Pearl on
Subtracting Bijections

So, thanks very much for listening, and go read the paper!


	Ground rules
	Subtraction
	Background
	Ping-pong
	High-level ping-pong

