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Abstract

diagrams is a domain-specific language for creating vector graph-
ics. We will give a short diagrams tutorial/demo, particularly high-
lighting the power of a functional, embedded domain-specific lan-

guage.

Categories and Subject Descriptors 1.3.6 [Computer Graphics):
Methodology and Techniques—Languages; D.3.2 [Programming
Languages]: Language Classifications—Applicative (functional)
languages

General Terms Languages

Keywords  diagrams, Haskell, EDSL, vector

1. Introduction

diagrams (http://projects.haskell.org/diagrams) is a
declarative domain-specific language for creating vector graphics.
embedded in the Haskell programming language (Marlow 2010).
Under continuous development for the past 4+ years, it serves as a
powerful platform for creating illustrations, visualizations, and art-
work, as well as a testbed for new ideas in functional EDSLs and in
functional approaches to graphics. Designed with “power users” in
mind, it includes support for multiple vector spaces, pluggable ren-
dering backends, sophisticated algorithms for working with paths,
and relative positioning of the constituent parts of a diagram. It
makes extensive use of Haskell’s type system to capture geometric
invariants, and uses a pure functional paradigm both in its internal
design (for example, using first-class functions to represent infor-
mation about boundaries) as well as in the design of its API, which
emphasizes composition rather than mutation.

We will begin by explaining just enough of the basics to get
started, and then use the remainder of the time to show off some
more sophisticated examples. In what follows, we include a few
representative examples, with commentary explaining what fea-
tures of the framework are illustrated by each example, and the
particular ways in which the examples highlight the power of a
functional EDSL (Hudak 1996).
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hilbert O = mempty
hilbert n = hilbert’ (n-1) # reflectY <> vrule 1
<> hilbert (n-1) <> hrule 1
<> hilbert (n-1) <> vrule (-1)
<> hilbert’ (n-1) # reflectX
where
hilbert’ m = hilbert m # rotateBy (1/4)

dia = hilbert 5 # strokeT
# 1lc darkred # lw medium # frame 1

Figure 1. Order-5 Hilbert curve, with code

2. Examples

Figure 1 shows an order-5 fractal Hilbert curve (Hilbert 1891),
along with the complete code used to generate it. Of course, re-
cursive functions such as hilbert are the bread and butter of
functional programming. This example also shows off the compo-
sitional nature of the framework, in this case building up a com-
plex path by concatenating shorter paths using the <> operator. In
fact, <> denotes not just concatenation of paths, but more generally
the associative combining operation for any monoid—of which di-
agrams has quite a few, including paths, colors, transformations,
styles, and diagrams themselves (Yorgey 2012).

Figure 2 shows a leaf-labelled binary tree along with the com-
plete code used to generate it (Piponi and Yorgey 2015). The first
few lines define t, an abstract representation of the tree to be drawn,
and the rest of the lines specify how to render it. This example il-
lustrates the ability of an embedded DSL to leverage the abstrac-
tion facilities of its host language. Here we define a new data type,
LeafType, and use it to enumerate the possibilities for leaves in the
tree to be drawn. We define functions to abstract out common pat-



import Diagrams.TwoD.Layout.Tree
import Data.Tree
import Data.Char (toLower)

data LeafType = A | B | H deriving Show
t=nd [ nd [ nd $ map 1f [B, B], 1f B ]

,nd [nd [ 1f H, nd $ map 1f [A, A] ]
, nd $ map 1f [A, A]

where nd
1f x

Node Nothing
Node (Just x) []

drawType x = mconcat
[ text (map toLower (show x)) # italic # centerX
, drawNode x ]

drawNode A = square 2 # fc yellow
drawNode B circle 1 # fc red
drawNode H = circle 1 # fc white
# dashingG [0.2,0.2] O

renderT

renderT
= renderTree (maybe mempty drawType) (~7)

symmLayout’ (with & slHSep .~ 4 & slVSep .~ 3)

Tree (Maybe LeafType) -> Diagram B

dia = renderT t # frame 0.5

Figure 2. Labelled binary tree, with code

terns (nd, 1£) and to specify custom behavior (drawType). We also
make use of higher-order functions: map is higher-order, of course,
but more interestingly, so is renderTree, which takes function ar-
guments specifying how to draw nodes and edges of a tree. Finally,
this example shows off the fact that diagrams comes with “batteries
included”, such as the tree layout algorithm used here.

Finally, Figure 3 shows a portrait of the Burrows—Wheeler
transform (BWT) (Burrows and Wheeler 1994) that was included
in the Bridges mathematical art exhibition at the 2014 Joint Math-
ematics Meetings. This is a portrait in the sense that it captures an
aspect of an algorithm concretely. In the middle on the left side an
input value starts the diagram. This value is manipulated according
to the steps of BWT clockwise with the top half encoding and the
bottom half decoding back to the original inpnut.

Having the full expressiveness of Haskell helped to shape this
work as it was created. Processes like extracting common code and
generalizing functions allowed rapid exploration of visual patterns
and the development of a visual language for the work. For in-
stance, the alphabet function produces a diagram of nested cir-
cles for a given number. Originally it had the colors “baked in”,
but later, when connecting parts of the diagram, Haskell’s ease of
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inputToBWT =
[ block rs # reflectX -- Rotations of s
, sorting 7 head rs rs’
, block rs’ -- Sorted rotations
-— of s
1

# map centerXY
# hcat’ (with & sep .7 0.1)

Figure 3. A portrait of the Burrows—Wheeler transform. The small
code fragment generates the top portion of the image.

refactoring allowed the extraction of a function with the colors with
little effort.

The flexibility of diagrams also allowed the exploration of var-
ious compositions with little change to the code. Instead of blocks
proceeding clockwise, we could have a single linear progression,
or a radial layout that fanned out like a circle. Most of these varia-
tions could be explored with small changes to the code responsible
for composition. Indeed, various layouts were revisited later in the
process even with significant changes in the code by keeping the
other layouts around and fixing errors caught by type checking. In
the end the algorithm’s own transition from row to column gives
an opportunity for the arrangement around a square and a reflective
symmetry of sorts across the horizontal midline.

References

Michael Burrows and David J Wheeler. A block-sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment Corpora-
tion, 1994.

David Hilbert. Uber die stetige Abbildung einer Linie auf ein Flichenstiick.
Mathematische Annalen, 38(3):459—460, 1891.

Paul Hudak. Building domain-specific embedded languages. ACM Com-
puting Surveys (CSUR), 28(4es):196, 1996.

Simon Marlow. Haskell 2010 Language Report. https://www.haskell.
org/onlinereport/haskel12010/, 2010.

Dan Piponi and Brent A Yorgey. Polynomial functors constrained by
regular expressions. In Proceedings of the Mathematics of Program
Construction, 2015.

Brent A Yorgey. Monoids: theme and variations (functional pearl). In ACM
SIGPLAN Notices, volume 47, pages 105-116. ACM, 2012.



