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The diagrams library started to scratch a personal itch.
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iagram
rrange $ map colorsToStrip (permutations [red, yellow, blue, green'])
where green' = rgb 010

arrange :: [Diagram] -> Diagram
arrange = hsep 10 . map (vsep 5) . groups
where groups = takeWhile (not . null) . map (take 6) . iterate (drop 6) _—

colorsToStrip :: Color ¢ => [c] -> Diagram
colorsToStrip = hcat . map (\c -> fc ¢ § rect 10 10)

main = renderAs PNG "permutations.png” (Width 300) dia

The goal: programmatically generate drawings and diagrams in a
way that is declarative, powerful, and semantically elegant.
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METAPOST

| first looked into existing solutions. The most obvious candidate is
MetaPost.
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But it's not sufficiently declarative, and uses a weird ad-hoc
language which isn't general-purpose.
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What about Asymptote, which is supposed to be a modern
replacement for MetaPost?
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No thanks: at least it uses a general-purpose language (so we can
compute the diagrams we want to describe), but it's a TERRIBLE
language combining the worst features of C++ and Java.
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PGF/TikZ

What about PGF/TikZ?
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That's right, it uses an ad-hoc, non-general purpose language
and. . .sigh.
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Thus, the diagrams library was born! It's gotten a bit of use,
people seem to like it. It got quite a few things right, but let’s look
at some things it got wrong.
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A fundamental ability of the library is to put two diagrams next to
each other to create a larger diagram.
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An obvious way to accomplish this is with bounding boxes.
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What happens when we want to rotate the triangle? The above is
what the currently released version of diagrams does — I've
gotten bug reports about it, and | agree it's a bug. But it's not
clear what the real solution is.
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Why not just adjust the box? Not so fast—this requires knowing
more about the diagram than just its bounding box in the first
place!
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We could do this, but now transformations don't
compose—rotating by A then by B gives a different bounding box
than just rotating by A+B.
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And what about putting things next to each other along a line that
isn't vertical or horizontal? We get this. ..
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...instead of this.
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An elegant solution, suggested by Sebastian Setzer, is to have a
function giving the distance to the nearest enclosing (hyper)plane
in a given direction (relative to some distinguished base point). In

some sense this gives us a functional representation of a convex

bounding region.
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This obviously works beautifully with rotation! In fact, it works
with any affine transformation.
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We can put two diagrams next to each other along any vector by
putting them alongside a separating plane. It's not “perfect” —
notice the small gap in this case — but it's pretty good, and
simple/consistent; it's easy to predict what will happen.
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Here's something else that the current version gets wrong—there's
no way to refer to previously laid out diagrams, so making a
diagram like this one is very tedious; there's no good way to do it.
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In the new version, every diagram will have an implicit
distinguished “control point” thought of as the origin of a local
coordinate system. Other points can be defined and named relative
to the origin and each other, using a simple language for linear
expressions.
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We can compose two diagrams by identifying a point from each,
with the identified point becoming the new origin. All other
diagram combinators can be implemented in terms of this
operation.
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A third limitation of the first version is that it only works for
two-dimensional diagrams!
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The new version is polymorphic over the vector space used, so we
can have 2D diagrams, 3D diagrams, animations. . .
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Something else the original version got wrong was to require Cairo
as a rendering backend.
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The new version will be more modular, allowing anyone to easily
create a new rendering backend.
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How you can help:
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Help work on the core library.
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Help write a blessed standard library of convenient/common things
implemented in terms of core primitives.
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Write a backend.
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Write documentation or a tutorial.
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Make some examples for fun and to help drive development.
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Write a higher-level extension library.
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Write an application for real-time visualization/editing, or a gitit
plugin, or. ..
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...design a better logo.
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