Declarative, embedded drawing with diagrams:
past and future

Brent Yorgey
University of Pennsylvania

Hac ¢
May 21, 2010

/38



The diagrams library started to scratch a personal itch.

38



iagram
rrange $ map colorsToStrip (permutations [red, yellow, blue, green'])
where green' = rgb 010

arrange :: [Diagram] -> Diagram
arrange = hsep 10 . map (vsep 5) . groups
where groups = takeWhile (not . null) . map (take 6) . iterate (drop 6) _—

colorsToStrip :: Color ¢ => [c] -> Diagram
colorsToStrip = hcat . map (\c -> fc ¢ § rect 10 10)

main = renderAs PNG "permutations.png” (Width 300) dia

The goal: programmatically generate drawings and diagrams in a
way that is declarative, powerful, and semantically elegant.

/38



METAPOST

| first looked into existing solutions. The most obvious candidate is
MetaPost.

38



But it's not sufficiently declarative, and uses a weird ad-hoc
language which isn't general-purpose.

38



totle

What about Asymptote, which is supposed to be a modern
replacement for MetaPost?

/38



No thanks: at least it uses a general-purpose language (so we can
compute the diagrams we want to describe), but it's a TERRIBLE
language combining the worst features of C++ and Java.

/38



PGF/TikZ

What about PGF/TikZ?

38



That's right, it uses an ad-hoc, non-general purpose language
and. . .sigh.

/38



~Fb 3 -3 6

mkW 1

n wor Sml
groupsOfist

1

%@é%@ ) wwds Weight Word.,,
. 5 badws
* -@C-D6 '” R
)

Thus, the diagrams library was born! It's gotten a bit of use,
people seem to like it. It got quite a few things right, but let’s look
at some things it got wrong.

10/38



38

11



A fundamental ability of the library is to put two diagrams next to
each other to create a larger diagram.

12/38



An obvious way to accomplish this is with bounding boxes.

13/38



What happens when we want to rotate the triangle? The above is
what the currently released version of diagrams does — I've
gotten bug reports about it, and | agree it's a bug. But it's not
clear what the real solution is.

14 /38



Why not just adjust the box? Not so fast—this requires knowing
more about the diagram than just its bounding box in the first
place!

15/38



.
Lecmmmememm-

.

~

We could do this, but now transformations don't
compose—rotating by A then by B gives a different bounding box
than just rotating by A+B.

16 /38



And what about putting things next to each other along a line that
isn't vertical or horizontal? We get this. ..

17 /38



...instead of this.

18 /38



An elegant solution, suggested by Sebastian Setzer, is to have a
function giving the distance to the nearest enclosing (hyper)plane
in a given direction (relative to some distinguished base point). In

some sense this gives us a functional representation of a convex

bounding region.

19/38



This obviously works beautifully with rotation! In fact, it works
with any affine transformation.

20 /38



We can put two diagrams next to each other along any vector by
putting them alongside a separating plane. It's not “perfect” —
notice the small gap in this case — but it's pretty good, and
simple/consistent; it's easy to predict what will happen.

21/38



Here's something else that the current version gets wrong—there's
no way to refer to previously laid out diagrams, so making a
diagram like this one is very tedious; there's no good way to do it.

22/38



vert

X bob

In the new version, every diagram will have an implicit
distinguished “control point” thought of as the origin of a local
coordinate system. Other points can be defined and named relative
to the origin and each other, using a simple language for linear
expressions.

23 /38



We can compose two diagrams by identifying a point from each,
with the identified point becoming the new origin. All other
diagram combinators can be implemented in terms of this
operation.

24 /38



A third limitation of the first version is that it only works for
two-dimensional diagrams!

25 /38



The new version is polymorphic over the vector space used, so we
can have 2D diagrams, 3D diagrams, animations. . .

26 /38






dia.png

» CAIRO dia.pdf
—— dia.ps

dia.svg

Something else the original version got wrong was to require Cairo
as a rendering backend.

28 /38



dia.png

55

W dia.pstex
dalip
> diatxt

I

dia.?

The new version will be more modular, allowing anyone to easily
create a new rendering backend.

29 /38



WANTED &5

How you can help:

30/38



Help work on the core library.

31/38



—h [

(©)
°

Help write a blessed standard library of convenient/common things
implemented in terms of core primitives.

32/38



%2
=0

- aalib ?

Write a backend.

33/38



Write documentation or a tutorial.

34 /38



Make some examples for fun and to help drive development.

35/38



i

ﬁ%

Write a higher-level extension library.

36/38



U

Write an application for real-time visualization/editing, or a gitit
plugin, or. ..

37/38



Dia [auS

...design a better logo.

38/38



