
Declarative, embedded drawing with diagrams:
past and future

Brent Yorgey
University of Pennsylvania

Hac ϕ
May 21, 2010

1 / 38

The diagrams library started to scratch a personal itch.

2 / 38

The goal: programmatically generate drawings and diagrams in a
way that is declarative, powerful, and semantically elegant.

3 / 38

I first looked into existing solutions. The most obvious candidate is
MetaPost.

4 / 38

But it’s not sufficiently declarative, and uses a weird ad-hoc
language which isn’t general-purpose.

5 / 38

What about Asymptote, which is supposed to be a modern
replacement for MetaPost?

6 / 38

No thanks: at least it uses a general-purpose language (so we can
compute the diagrams we want to describe), but it’s a TERRIBLE

language combining the worst features of C++ and Java.

7 / 38

PGF/TikZ

What about PGF/TikZ?

8 / 38

PGF/TikZ

That’s right, it uses an ad-hoc, non-general purpose language
and. . . sigh.

9 / 38

Thus, the diagrams library was born! It’s gotten a bit of use,
people seem to like it. It got quite a few things right, but let’s look

at some things it got wrong.

10 / 38

1

11 / 38

A fundamental ability of the library is to put two diagrams next to
each other to create a larger diagram.

12 / 38

An obvious way to accomplish this is with bounding boxes.

13 / 38

What happens when we want to rotate the triangle? The above is
what the currently released version of diagrams does — I’ve

gotten bug reports about it, and I agree it’s a bug. But it’s not
clear what the real solution is.

14 / 38

Why not just adjust the box? Not so fast—this requires knowing
more about the diagram than just its bounding box in the first

place!

15 / 38

We could do this, but now transformations don’t
compose—rotating by A then by B gives a different bounding box

than just rotating by A+B.

16 / 38

And what about putting things next to each other along a line that
isn’t vertical or horizontal? We get this. . .

17 / 38

. . . instead of this.

18 / 38

An elegant solution, suggested by Sebastian Setzer, is to have a
function giving the distance to the nearest enclosing (hyper)plane
in a given direction (relative to some distinguished base point). In

some sense this gives us a functional representation of a convex
bounding region.

19 / 38

This obviously works beautifully with rotation! In fact, it works
with any affine transformation.

20 / 38

We can put two diagrams next to each other along any vector by
putting them alongside a separating plane. It’s not “perfect” —

notice the small gap in this case — but it’s pretty good, and
simple/consistent; it’s easy to predict what will happen.

21 / 38

2
2

2
Here’s something else that the current version gets wrong—there’s

no way to refer to previously laid out diagrams, so making a
diagram like this one is very tedious; there’s no good way to do it.

22 / 38

vert

bobx

center

joe

In the new version, every diagram will have an implicit
distinguished “control point” thought of as the origin of a local

coordinate system. Other points can be defined and named relative
to the origin and each other, using a simple language for linear

expressions.

23 / 38

vert

x

center
joe=bob

We can compose two diagrams by identifying a point from each,
with the identified point becoming the new origin. All other
diagram combinators can be implemented in terms of this

operation.

24 / 38

3

A third limitation of the first version is that it only works for
two-dimensional diagrams!

25 / 38

R2 R3 R → V . . .

x

y

The new version is polymorphic over the vector space used, so we
can have 2D diagrams, 3D diagrams, animations. . .

26 / 38

4

27 / 38

CAIRO
dia.png
dia.pdf
dia.ps
dia.svg

Something else the original version got wrong was to require Cairo
as a rendering backend.

28 / 38

dia.png

dia.pstex

dia.txt

dia.?

The new version will be more modular, allowing anyone to easily
create a new rendering backend.

29 / 38

How you can help:

30 / 38

Help work on the core library.

31 / 38

f

Help write a blessed standard library of convenient/common things
implemented in terms of core primitives.

32 / 38

f

?

Write a backend.

33 / 38

ve rt

x

ce nt er

f

?

Write documentation or a tutorial.

34 / 38

ve rt

x

ce nt er

f

?

Make some examples for fun and to help drive development.

35 / 38

ve rt

x

ce nt er

f

?

Write a higher-level extension library.

36 / 38

vert

x

center
joe=bob

dia : : D ia g ra m
dia = ar ra ng e $ m ap c ol or sT oS tr ip (p e rm u ta tio n s [re d , y el lo w, b lu e, gr ee n '])
 w h er e gr ee n' = r gb 0 1 0

ar ra ng e :: [D ia gr am] -> Di ag ra m
ar ra ng e = h se p 10 . m ap (vs ep 5) . g ro u ps
 w h er e gr ou ps = t ak e W hi le (n ot . nu ll) . m ap (ta ke 6) . i te ra te (d ro p 6)

co lo rsT o St rip : : C o lo r c = > [c] -> D ia g ra m
co lo rsT o St rip = hc at . m ap (\c -> f c c $ r ec t 10 1 0)

ma in = r en d er As P N G "p er m ut at io ns .p n g" (W i dt h 30 0) d ia

ve rt

x

ce nt er

f

?

Write an application for real-time visualization/editing, or a gitit
plugin, or. . .

37 / 38

. . . design a better logo.

38 / 38

