
Elena Machkasova (Ed.): International Workshop on Trends

in Functional Programming in Education 2023 (TFPIE 2023)

EPTCS 382, 2023, pp. 64–81, doi:10.4204/EPTCS.382.4

© B. A. Yorgey

This work is licensed under the

Creative Commons Attribution License.

DISCO: A Functional Programming Language for Discrete

Mathematics

Brent A. Yorgey

Hendrix College
Conway, Arkansas, USA

yorgey@hendrix.edu

DISCO is a pure, strict, statically typed functional programming language designed to be used in

the setting of a discrete mathematics course. The goals of the language are to introduce students to

functional programming concepts early, and to enhance their learning of mathematics by providing a

computational platform for them to play with. It features mathematically-inspired notation, property-

based testing, equirecursive algebraic types, subtyping, built-in list, bag, and finite set types, a REPL,

and student-focused documentation. DISCO is implemented in Haskell, with source code available

on GitHub,1 and interactive web-based REPL available through replit.2

1 Introduction

Many computer science curricula at the university level include a discrete mathematics course as a core

requirement [CM13]. Often taken in the first or second year, a discrete mathematics course introduces

mathematical structures and techniques of foundational importance in computer science, such as induc-

tion and recursion, set theory, logic, modular arithmetic, functions, relations, and graphs. In addition,

it sometimes serves as an introduction to writing formal proofs. Although there is wide agreement that

discrete mathematics is foundational, students often struggle to see its relevance to computer science.

Functional programming is a style of programming, embodied in languages such as Haskell, Stan-

dard ML, OCaml, Scala, F#, and Racket, which emphasizes functions (i.e. input-output processes) rather

than sequences of instructions. It enables working at high levels of abstraction as well as rapid prototyp-

ing and refactoring, and provides a concise and powerful vocabulary to talk about many other topics in

computer science. It is becoming critical to expose undergraduate students to functional programming

early, but many computer science programs struggle to make space for it. The Association for Comput-

ing Machinery’s 2013 curricular guidelines [CM13] do not even include functional programming as a

core topic.

One creative idea is to combine functional programming and discrete mathematics into a single

course. This is not a new idea [Wai92, Hen02, SW02, DE04, OHP06, Van11, Van13, Van17, Xin08], and

even shows up in the 2007 model curriculum of the Liberal Arts Computer Science Consortium [Lib07].

The benefits of such an approach are numerous:

• It allows functional programming to be introduced at an early point in undergraduates’ careers,

since discrete mathematics is typically taken in the first or second year. This allows ideas from

functional programming to inform students’ thinking about the rest of the curriculum. By contrast,

when functional programming is left until later in the course of study, it is in danger of being seen

as esoteric or as a mere curiosity.

1https://github.com/disco-lang/disco
2https://replit.com/@BrentYorgey/Disco#README.md

http://dx.doi.org/10.4204/EPTCS.382.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/disco-lang/disco
https://replit.com/@BrentYorgey/Disco#README.md

B. A. Yorgey 65

• The two subjects complement each other well: discrete math topics make good functional pro-

gramming exercises, and ideas from functional programming help illuminate topics in discrete

mathematics.

• In a discrete mathematics course with both mathematics and computer science majors, mathe-

matics majors can have a “home turf advantage” since the course deals with topics that may be

already familiar to them (such as writing proofs), whereas computer science majors may struggle

to connect the course content to computer science skills and concepts they already know. Including

functional programming levels the playing field, giving both groups of students a way to connect

the course content to their previous experience. Computer science majors will be more comfort-

able learning mathematical concepts that they can play with computationally; mathematics majors

can leverage their experience with mathematics to learn a bit about programming.

• It is just plain fun: using programming enables interactive exploration of mathematical concepts,

which leads to higher engagement and increased retention.

However, despite its benefits, this model is not widespread in practice. This may be due partly to lack

of awareness, but there are also some real roadblocks to adoption that make it impractical or impossible

for many departments.

• Existing functional languages—such as Haskell, Racket, OCaml, or SML—are general-purpose

languages which (with the notable exception of Racket) were not designed specifically with teach-

ing in mind. The majority of their features are not needed in the setting of discrete mathematics,

and teachers must waste a lot of time and energy explaining incidental detail or trying to hide it

from students.

• Again with the notable exception of Racket, tooling for existing functional languages is designed

for professional programmers, not for students. The systems can be difficult to set up, generate

confusing error messages, and are generally designed to facilitate efficient production of code

rather than interactive exploration and learning.

• As with any subject, effective teaching of a functional language requires expertise in the language

and its use, or at least thorough familiarity, on the part of the instructor. General-purpose func-

tional languages are large, complex systems, requiring deep study and years of experience to mas-

ter. Even if only a small part of the language is presented to students, a high level of expertise is

still required to be able to select and present a relevant subset of the language and to help students

navigate around the features they do not need. For many instructors, spending years learning a

general-purpose functional language just to teach discrete mathematics is a non-starter. This is es-

pecially a problem at institutions where the discrete mathematics course is taught by mathematics

faculty rather than computer science faculty.

• Students often experience friction caused by differences between standard mathematics notation

and the notation used by existing functional programming languages. As one simple example, in

mathematics one can write 2x to denote multiplication of x by 2; but many programming languages

require writing a multiplication operator, for example, 2*x. Any one such difference is small, but

the accumulation of many such differences can be a real impediment to students as they attempt to

move back and forth between the worlds of abstract mathematics and concrete computer programs.

66 DISCO: A Functional Programming Language for Discrete Mathematics

For example, consider the following function defined using typical mathematical notation:

f : N→Q

f (2n) = 0

f (2n+1) =

{

n/2 if n > 5,

3n+7 otherwise

Now consider this translation of the function into idiomatic Haskell:

f :: Int -> Rational

f x

| even x = 0

| n > 5 = fromIntegral n / 2

| otherwise = 3*n + 7

where

n = x `div` 2

Although the translation may seem trivial to experienced functional programmers, from the point

of view of a student these are extremely different.

DISCO is a new functional programming language, specifically designed for use in a discrete mathe-

matics course, which attempts to solve many of these issues:

• Although DISCO is Turing-complete, it is a teaching language, not a general-purpose language.

It includes only features which are of direct relevance to teaching core functional programming

and discrete mathematics topics; for example, it does not include a floating-point number type.

Section 2 has many examples of the language’s features and some discussion of features which are

explicitly excluded.

• As much as possible, the language’s features and syntax mirror common mathematical practice

rather than other functional languages. For example, a translation into DISCO of the example

function introduced previously is shown below.

f : N -> Q

f(2n) = 0

f(2n+1) = {? n/2 if n > 5,

3n + 7 otherwise

?}

Section 2 has many more examples, and Section 3.1 discusses some notable exceptions.

• As a result—although there is as yet no data to back this up—the language should be easy for

instructors to learn, even mathematicians without much prior programming experience.

DISCO is an open-source project, implemented in Haskell, with source code licensed under a BSD

3-clause license and available on GitHub.3 Although it is possible to install DISCO locally, either from

Hackage4 or directly from source, one can also interact with DISCO in the cloud via a web browser,

through the magic of replit.5 This is the primary way that students will be instructed to use Disco, so that

3https://github.com/disco-lang/disco
4https://hackage.haskell.org/package/disco
5https://replit.com/@BrentYorgey/Disco#README.md

https://github.com/disco-lang/disco
https://hackage.haskell.org/package/disco
https://replit.com/@BrentYorgey/Disco#README.md

B. A. Yorgey 67

students do not need to install a Haskell toolchain or worry about exhausting the computational resources

of their device. Via replit, it is entirely feasible to play with DISCO on any device with a web browser,

including Chromebooks, tablets, or phones. Documentation for DISCO is hosted on readthedocs.org.6

2 DISCO by Example

We will begin by exploring some of the major features and uses of the language via a series of examples.

2.1 Greatest common divisor

Our first example is an implementation of the classic Euclidean algorithm for computing the greatest

common divisor of two natural numbers, shown in Listing 1.

||| The greatest common divisor of two natural numbers.

!!! gcd(7,6) == 1

!!! gcd(12,18) == 6

!!! gcd(0,0) == 0

!!! forall a:N, b:N. gcd(a,b) divides a /\ gcd(a,b) divides b

!!! forall a:N, b:N, g:N. (g divides a /\ g divides b) ==> g divides gcd(a,b)

gcd : N * N -> N

gcd(a,0) = a -- base case

gcd(a,b) = gcd(b, a mod b) -- recursive case

Listing 1: Definition of gcd in DISCO

Lines beginning with ||| denote special documentation comments attached to the subsequent defi-

nition, similar to docstrings in Python (regular comments start with --). This documentation can be later

accessed with the :doc command at the REPL prompt:

Disco> :doc gcd

gcd : N × N → N

The greatest common divisor of two natural numbers.

Lines beginning with !!! denote tests attached to the subsequent definition, which can be either

simple Boolean unit tests (such as gcd(7,6) == 1), or quantified properties (such as the last two tests,

which together express the universal property defining gcd). Such properties will be tested exhaustively

when feasible, or, when exhaustive testing is impossible (as in this case), tested with a finite number of

randomly chosen inputs. Under the hood, this uses the QuickCheck [CH00] and simple-enumeration

packages to generate inputs. For example:

Disco> :test forall a:N, b:N. let g = gcd(a,b) in g divides a /\ g divides b

- Possibly true: ∀a, b. let g = gcd(a, b) in g divides a /\ g divides b

6https://disco-lang.readthedocs.io

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/simple-enumeration
https://disco-lang.readthedocs.io

68 DISCO: A Functional Programming Language for Discrete Mathematics

Checked 100 possibilities without finding a counterexample.

Disco> :test forall a:N, b:N. let g = gcd(a,b) in g divides a /\ (2g) divides b

- Certainly false: ∀a, b. let g = gcd(a, b) in g divides a /\ 2 * g divides b

Counterexample:

a = 0

b = 1

In the first case, DISCO reports that 100 sample inputs were checked without finding a counterex-

ample, leading to the conclusion that the property is possibly true. In the second case, when we modify

the test by demanding that b must be divisible by twice gcd(a,b), DISCO is quickly able to find a

counterexample, proving that the property is certainly false.

Every top-level definition in DISCO must have a type signature; gcd : N * N -> N indicates that

gcd is a function which takes a pair of natural numbers as input and produces a natural number result.

The recursive definition of gcd is then straightforward, featuring multiple clauses and pattern-matching

on the input.

2.2 Primality testing

The example shown in Listing 2, testing natural numbers for primality via trial division, is taken from

Doets and van Eijck [DE04, pp. 4–11], and has been transcribed from Haskell into DISCO. (DISCO

also has a much more efficient built-in primality testing function that calls out to the highly optimized

arithmoi package.)

||| ldf k n calculates the least divisor of n that is at least k and

||| at most sqrt n. If no such divisor exists, then it returns n.

ldf : N -> N -> N

ldf k n =

{? k if k divides n,

n if k^2 > n,

ldf (k+1) n otherwise

?}

||| ld n calculates the least nontrivial divisor of n, or returns n if

||| n has no nontrivial divisors.

ld : N -> N

ld = ldf 2

||| Test whether n is prime or not.

isPrime : N -> Bool

isPrime n = (n > 1) and (ld n == n)

Listing 2: Primality testing in DISCO

There are a few interesting things to point out about this example. The most obvious is the use of

a case expression in the definition of ldf delimited by {? ... ?}. It is supposed to be reminiscent of

https://hackage.haskell.org/package/arithmoi

B. A. Yorgey 69

typical mathematical notation like

ldf k n =

k if k | n,

n if k2 > n,

ldf (k+1) n otherwise.

However, we can’t use a bare curly brace as DISCO syntax since it would conflict with the notation for

literal sets (and we can’t use a giant, multi-line curly brace in any case!7). The intention is that writing

{? ... ?} lends itself to the mnemonic of “asking questions” to see which branch of the case expression

to choose. In general, each branch can have multiple chained conditions, each of which can either be

a Boolean guard, as in this example, or a pattern match introduced with the is keyword. In fact, all

multi-clause function definitions with pattern matching really desugar into a single case expression. For

example, the definition of gcd in Listing 1 desugars to

gcd : N * N -> N

gcd = \p. {? a if p is (a,0), gcd(b, a mod b) if p is (a,b) ?}

Notice that the definition of isPrime uses the and keyword instead of /\. These are synonymous—

in fact, && and ∧ (U+2227 LOGICAL AND) are also accepted. In general, DISCO’s philosophy is to

allow multiple syntaxes for things with common synonyms rather than imposing one particular choice.

Typically, a Unicode representation of the “real” notation is supported (and used when pretty-printing),

along with an ASCII equivalent, as well as (when applicable) syntax common in other functional pro-

gramming languages. Another good example is the natural number type, which can be written N, N, Nat,

or Natural. There are several reasons for this design choice:

• It makes code easier to write since students have to spend less time trying to remember the one and

only correct syntax choice, or worrying about whether a particular syntax they remember comes

from math class, Python, or DISCO.

• Although having many different syntax choices can make code harder to read, helping students

learn how to interpret formal notation and how to translate between mathematics and programming

notation are typical explicit learning goals of the course, so this could be considered a feature.

Notice that ldf is defined via currying, and is partially applied in the definition of ld. Just as

in Haskell, every function in DISCO takes exactly one argument, but some functions can return other

functions (curried style) and some functions can take a product type as input (uncurried style). Via

tutorials, documentation, and the types of standard library functions, DISCO encourages the use of an

uncurried style, since students are already used to notation like f(x,y) for multi-argument functions in

mathematics.

Finally, this example introduces the primitive Bool type in addition to the natural number type N seen

previously. DISCO also has a primitive Char type for Unicode codepoints, and several other numeric

types to be discussed later.

2.3 Z-order

The “Morton Z-order” is one of my favorite bijections showing that N×N has the same cardinality as N;

it takes a pair of natural numbers, expresses them in binary, and interleaves their binary representations

to form a single natural number. DISCO code to compute this bijection (and check that it really is a

bijection) is shown in Listing 3.

7One might imagine using vertically aligned curly brace characters to simulate a giant curly brace, but that would require

tricky indentation-sensitive parsing.

70 DISCO: A Functional Programming Language for Discrete Mathematics

!!! forall n:N. zOrder(zOrder'(n)) == n

!!! forall p:N*N. zOrder'(zOrder(p)) == p

zOrder : N*N -> N

zOrder(0,0) = 0

zOrder(2m,n) = 2 * zOrder(n,m)

zOrder(2m+1,n) = 2 * zOrder(n,m) + 1

zOrder' : N -> N*N

zOrder'(0) = (0,0)

zOrder'(2n) = {? (2y,x) when zOrder'(n) is (x,y) ?}

zOrder'(2n+1) = {? (2y+1,x) when zOrder'(n) is (x,y) ?}

Listing 3: Morton Z-Order

This example again uses case expressions; it may seem odd to use case expressions with only

one branch, but this is done in order to be able to pattern-match on the result of the recursive call

to zOrder'. The most interesting thing about this example is its use of arithmetic patterns, such as

zOrder'(2n) = ... and zOrder'(2n+1) = This is common mathematical notation, but per-

haps less common in programming languages. Any expression with exactly one variable and only basic

arithmetic operators can be used as a pattern; the pattern matches if there exists a value of the appropriate

type for the variable which makes the expression equal to the input. For example, the pattern 2n will

match only even natural numbers, and n will then be bound to half of the input.

2.4 Finite sets

DISCO has built-in finite sets; in particular, values of type Set(A) are finite sets with elements of type A.

DISCO supports the usual set operations (union, intersection, difference, cardinality, power set), and sets

can be created by writing a finite set literal, like {1,3,5,7}, using ellipsis notation, like {1, 3 .. 7},

or using a set comprehension, as in {2x+1 | x in {0 .. 3}}. Listing 4 shows a portion of an exercise

(with answers filled in) to help students practice their understanding of set comprehensions.

Set comprehensions in DISCO work similarly to list comprehensions in Haskell (DISCO has list

and bag comprehensions as well). In these examples we can see both filtering the generated values via

Boolean guards, as well as transforming the outputs via an expression to the left of the vertical bar.

While on the subject of sets, it is worth mentioning that the distinction between types and sets is

something of a pedagogical minefield: the distinction is nonexistent in typical presentations of mathe-

matics, but crucial in a computational system with static type checking. This issue is discussed in more

detail in Section 3.4.

One other thing this example highlights is that there is extensive, student-centered documentation

available at https://disco-lang.readthedocs.io/. Students are pointed to this documentation not

just from links in homework assignments such as this, but also by the DISCO REPL itself. Encounter-

ing an error, or asking for documentation about a function, type, or operator, are all likely to result in

documentation links for further reading, as illustrated in Listing 5.

https://disco-lang.readthedocs.io/

B. A. Yorgey 71

-- Exercise D1. For each of exA through exF below, replace the empty

-- set with a *set comprehension* so that the tests all pass, as in

-- the example. (Remember, Disco will run the tests when you :load

-- this file.)

--

-- Some relevant documentation you may find useful:

--

-- https://disco-lang.readthedocs.io/en/latest/reference/set.html

-- https://disco-lang.readthedocs.io/en/latest/reference/comprehension.html

-- https://disco-lang.readthedocs.io/en/latest/reference/size.html

-- https://disco-lang.readthedocs.io/en/latest/reference/power.html

||| An example to illustrate the kind of thing you are supposed to do

||| in the exercises below. We have defined the set using a *set

||| comprehension* so that it has the specified elements and the test

||| passes.

!!! example == {1, 4, 9, 16, 36} -- test specifying 'example' elements

example : Set(N)

example = {x^2 | x in {1 .. 6}, x /= 5} -- a set comprehension defining it

-- Now you try.

!!! exA == {1, 3, 5, 7, 9, 11, 13, 15}

exA : Set(N)

exA = {2x+1 | x in {0..7}}

!!! exD == {{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}}

exD : Set(Set(N))

exD = {S | S in power({1..4}), |S| == 3}

Listing 4: Set comprehension exercise

Disco> :doc +

~+~ : N × N → N

precedence level 7, left associative

The sum of two numbers, types, or graphs.

https://disco-lang.readthedocs.io/en/latest/reference/addition.html

Disco> x + 3

Error: there is nothing named x.

https://disco-lang.readthedocs.io/en/latest/reference/unbound.html

Listing 5: DISCO generates links to online documentation

72 DISCO: A Functional Programming Language for Discrete Mathematics

import list

import oeis

-- The type of binary tree shapes: empty tree, or a pair of subtrees.

type BT = Unit + BT*BT

||| Compute the size (= number of binary nodes) of a binary tree shape.

size : BT -> N

size(left(unit)) = 0

size(right(l,r)) = 1 + size(l) + size(r)

||| Check whether all the items in a list satisfy a predicate.

all : List(a) * (a -> Bool) -> Bool

all(as, P) = reduce(~/\~, true, each(P, as))

||| Generate the list of all binary tree shapes of a given size.

!!! all([0..4], \n. all(treesOfSize(n), \t. size(t) == n))

treesOfSize : N -> List(BT)

treesOfSize(0) = [left(unit)]

treesOfSize(n+1) =

[right (l,r) | k <- [0 .. n], l <- treesOfSize(k), r <- treesOfSize(n .- k)]

||| The first few Catalan numbers, computed by brute force.

catalan1 : List(N)

catalan1 = each(\n. length(treesOfSize(n)), [0..4])

||| More Catalan numbers, extended via OEIS lookup!

catalan : List(N)

catalan = extendSequence(catalan1)

Listing 6: Counting trees

2.5 Trees and Catalan numbers

Listing 6 is a fun example generating and counting binary trees. It defines a recursive type BT of binary

tree shapes, along with a function to generate a list of all possible tree shapes of a given size (via a list

comprehension), and uses it to generate the first few Catalan numbers. This list is then extended via

lookup in the Online Encyclopedia of Integer Sequences (OEIS) [OEI22].

The first thing to note is that DISCO has equirecursive algebraic types. The type declaration defines

the type BT to be the same type as Unit + BT*BT (i.e. the tagged union of the primitive one-element

Unit type with pairs of BT values). This is a big departure from the isorecursive types of Haskell and

OCaml, where constructors are required to explicitly “roll” and “unroll” values of recursive types. We

can see in the example that size takes a value of type BT as input, but can directly pattern-match on

left(unit) and right(l,r) without having to “unfold” or “unroll” it first. Using equirecursive types

makes the implementation of the type system more complex, but it is a very deliberate choice:

• There is less incidental complexity for students to stumble over. In my experience, students learn-

B. A. Yorgey 73

ing Haskell are often confused by the idea of constructors and how to use them to create and

pattern-match on data types.

• DISCO has no special syntax for declaring (recursive) sums-of-products; it simply has sum types,

product types, and recursive type synonyms. Of course, it would be very tedious to write “real”

programs in such a language—values of large sum types like type T = A + B + C + ... have

to be written as left(a), right(left(b)), right(right(left(c))), and so on. However, the

sum types used as examples in a discrete mathematics class rarely have more than two or three

summands, and working directly with primitive sum and product types helps students explicitly

make connections to other things they have already seen, such as Cartesian product and disjoint

union of sets. It also reinforces the algebraic nature of algebraic data types.

The oeismodule is inessential, but can be a fun way for students to explore integer sequences and the

OEIS. In addition to extendSequence, the module also provides a lookupSequence function, which

returns the URL of the first OEIS result, if there is any:

Disco> lookupSequence(catalan1)

right("https://oeis.org/A000108")

The last things illustrated by this example are some facilities for computing with collections. The

built-in each function is like Haskell’s map, but works for sets and multisets in addition to lists. reduce

is like foldr, but again working over sets and multisets in addition to lists. In this case, the all function

is defined by first mapping a predicate over each element of a list, then reducing the resulting list of

Booleans via logical conjunction. (Putting twiddles (~) in place of arguments is the way to turn operators

into standalone functions, thus: ~/\~.) Notice also that the all function is polymorphic: DISCO has

support for standard parametric polymorphism.

2.6 Defining and testing bijections

Listing 7 shows part of another exercise I give to my students, asking them to define the inverse of a

given function and use DISCO to check that their inverse is correct. This exercise makes essential use

of the testing facility we have already seen: if a student defines a function which is not inverse to the

given function, DISCO is usually able to quickly find a counterexample. Running this counterexample

through the functions hopefully gives the student some insight into why their function is not correct. For

example, if we try (incorrectly) defining g2(x) = x - 1/2, DISCO reports

g2:

- Certainly false: ∀x. f2(g2(x)) == x

Counterexample:

x = 1

In this example we can also see more numeric types besides the natural numbers. DISCO actually

has four primitive numeric types:

• The natural numbers N= {0,1,2, . . . }, which support addition and multiplication.

• The integers Z= {. . . ,−2,−1,0,1,2, . . . }, which besides addition and multiplication also support

subtraction.

• The fractional numbers F = {a/b | a,b ∈ N,b 6= 0}, i.e. nonnegative rationals, which besides

addition and multiplication also support division.

• The rational numbers Q, which support all four arithmetic operations.

74 DISCO: A Functional Programming Language for Discrete Mathematics

--

-- Each of the functions below is a bijection. Define another Disco

-- function which is its inverse, and write properties showing that

-- the functions are inverse. Part (a) has already been done for you

-- as an example. Part (b) has been done partially. You should

-- complete parts (c)-(g) on your own.

-- (a) --

f1 : Z -> Z

f1(n) = n - 5

-- EXAMPLE SOLUTION for part (a). Definition of g1 as the inverse of

-- f1, with two test properties demonstrating they are inverse.

!!! forall z:Z. f1(g1(z)) == z

!!! forall z:Z. g1(f1(z)) == z

g1 : Z -> Z

g1(n) = n + 5

-- (b) --

f2 : Q -> Q

f2(x) = 2x + 1

-- PARTIAL SOLUTION for part (b). Some test properties and a type

-- declaration for g2; you should fill in a definition for g2.

!!! forall x:Q. f2(g2(x)) == x

!!! forall x:Q. g2(f2(x)) == x

g2 : Q -> Q

-- FILL IN YOUR DEFINITION HERE

Listing 7: Defining and testing bijections

B. A. Yorgey 75

Disco> :type -3

-3 : Z

Disco> :type |-3|

abs(-3) : N

Disco> :type 2/3

2 / 3 : F

Disco> :type -2/3

-2 / 3 : Q

Disco> :type floor(-2/3)

floor(-2 / 3) : Z

Disco> :type [1,2,3]

[1, 2, 3] : List(N)

Disco> :type [1,-2,3/5]

[1, -2, 3 / 5] : List(Q)

Listing 8: Numeric types and subtyping

DISCO uses subtyping to match standard mathematical practice. For example, it is valid to pass a

natural number value to a function expecting an integer input. Mathematicians (and students!) would

find it very strange and tedious if one were required to apply some sort of coercion function to turn a

natural number into an integer.

These four types naturally form a diamond-shaped lattice, as shown in Fig. 1. N is a subtype of both

Figure 1: DISCO’s numeric type lattice

Z and F, which are in turn both subtypes of Q. Moving up and left in the lattice (from N to Z, or F to

Q) corresponds to allowing subtraction; moving up and right corresponds to allowing division. Moving

down and left can be accomplished via a rounding operation such as floor or ceiling; moving down and

right can be accomplished via absolute value. Listing 8 demonstrates these ideas by requesting the types

of various expressions. In the last example, in particular, notice how DISCO infers the type Q for the

elements of the list, since that is the only type that supports both negation and division.

DISCO has no floating-point type, because floating-point numbers are the worst [Gol91] and there is

no particular need for real numbers in a discrete mathematics course.

76 DISCO: A Functional Programming Language for Discrete Mathematics

3 Discussion and Future Work

3.1 Syntax

For the most part, DISCO tries to use syntax as close to standard mathematical syntax as possible. How-

ever, there are a few notable cases where this was deemed impossible, typically because standard math-

ematical syntax is particularly ambiguous or overloaded. Thinking explicitly about these cases is a

worthwhile exercise, since they are likely to be confusing to students anyway.

• Mathematicians are very fond of using vertical bars for multiple unrelated things, and DISCO

actually does well to allow them in many cases: absolute value, set cardinality, and the separator

between expression and guards in a comprehension all can be written in DISCO with vertical

bars. However, the “is a divisor of” relation is also traditionally written with a vertical bar, as in

3 | 21, but DISCO does not support this notation. Including it would make the grammar extremely

ambiguous. (And besides, Dijkstra would tell us that we should not use a visually symmetric

symbol for a nonsymmetric relation!) Instead, DISCO provides divides as an infix operator. In

my experience students have no problem remembering the difference.

• In mathematics, the equality symbol = is also typically overloaded to denote both definition (“let

x= 3, and consider. . . ”) and equality testing (“if x= 3, then. . . ”). DISCO cannot use the same sym-

bol for both, since otherwise it would be impossible to tell whether the user is writing a definition

or entering a Boolean test to be evaluated. This is confusing for students but it seems like it can’t

be helped, and in any case I would argue that trying to gloss over the difference is not really doing

students any favors, but simply allowing them to persist in some fundamental misunderstandings.

• DISCO allows juxtaposition to denote both function application, as in f(3), and multiplication, as

in 2x. It uses a simple syntax-directed approach to tell them apart: if the expression on the left-

hand side of a juxtaposition is a numeric literal, or a parenthesized expression with an operator,

then it is interpreted as multiplication; otherwise it is interpreted as function application. However,

this does not always get it right, and there are times when an explicit multiplication operator must

be written (one notable example is when scaling the output of a function call, as in 2 f (x); in DISCO

this must currently be written 2*f(x), although this can hopefully be fixed). It might be worth

exploring a more type-directed approach, although that would be considerably more complex. It

seems like to really get this “right” requires general intelligence: for example, does the expression

f (x+ 2) denote multiplication or function application? Are you sure? How do you know? What

about in the expression x(y+2)? Or how about “Let x be the function which doubles its argument,

and consider x(y+2) . . . ”?

3.2 Student experience

So far, I have used DISCO in my discrete mathematics course twice, in the spring semesters of 2022

and 2023. Both courses had about 25 students, mostly sophomore computer science majors, with a few

mathematics majors in the mix as well. In the spring of 2023 I asked students a couple questions about

Disco on the end-of-semester course evaluation. The results are shown below. Although I did not get a

good response rate and the results have no statistical significance, they are at least encouraging. The few

students who wrote optional textual comments also had very positive things to say.

B. A. Yorgey 77

Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Using Disco helped me learn the

mathematical ideas in this course

better.

0 2 0 7 7

Learning Disco helped me im-

prove my computer program-

ming skills.

0 0 4 7 5

3.3 Type system

DISCO and its type system were designed to be intuitive for students and to corresponding closely to

mathematical practice, but this has not always led to the simplest type system from an implementation

point of view!

• As previously mentioned, DISCO has subtyping in order to accommodate typical mathematical

practice. DISCO’s subtyping is structural, meaning that we only really need concern ourselves with

subtyping relationships between primitive types; a subtyping relation between complex types (for

example, sum, product, or function types) can always ultimately be broken down into subtyping

relations between simpler types. Subtyping complicates the type system since, for example, when

typechecking the application of a function to an argument, we cannot just check that the types

match via unification, but we must instead emit a subtyping constraint which we check later.

• DISCO also has parametric polymorphism, since a language without polymorphism would not re-

ally give students a good idea of the expressive power of statically typed functional programming.

Of course, this means that typing constraints can involve unification variables as well as skolem

variables (when checking a polymorphic type).

• DISCO’s type system must actually support qualified polymorphism (similar to Haskell’s type

classes, but with only a specific set of built-in classes) in order to be able to infer types in a

setting where some types support certain operations (e.g. subtraction or division) and some do

not. For example, what is the type of \x. x - 2? Most generally, this function has a type like

∀a. (sub(a),Z <: a) ⇒ a → a, that is, is a polymorphic function with type a → a for any type a

which supports subtraction and has Z as a subtype, i.e. either Z or Q. (As a nice exercise, you

might like to convince yourself that none of Z → Z, Z → Q, Q → Z, or Q → Q will work—

some of them are invalid types for the function, and some of them, although valid, are not general

enough.)

Such types are currently only allowed internally, during type inference, but must be monomor-

phized away before showing types to users. This is sound, but can be rather confusing. For

example, DISCO will report that the type of \x. x - 2 is Z→ Z, but will also happily allow it to

be applied to a fractional input such as 5/2, which would be a type error if its most general type

were really Z→ Z.

Disco> :type \x. x - 2

λx. x - 2 : Z → Z

Disco> (\x. x - 2) (5/2)

1/2

78 DISCO: A Functional Programming Language for Discrete Mathematics

One interesting idea to improve the situation would be to show the user multiple potential monomor-

phic instantiations of a general type scheme, something like this, perhaps:

Disco> :type \x. x - 2

λx. x - 2

: Z → Z

: Q → Q

• As mentioned before, DISCO has equirecursive types. The big wrinkle this adds to the type system

is that simple structural equality (or unification) no longer suffices; when recursive type synonyms

are involved, two types can be the same even though they look different.

The combination of qualified parametric polymorphism, subtyping, and equirecursive types makes

for an overall system which seems only barely on the edge of tractability. For the implementation of type

inference and checking I relied heavily on Traytel et al. [TBN11] who describe the implementation of a

similar type system for Isabelle/HOL. There are almost certainly bugs, but overall I am fairly confident

in the soundness of the type system.

3.4 Types vs sets

Axiomatic set theory is usually taken as the de facto foundation for mathematics. On the other hand,

in practice, mathematicians usually behave more as if they were working in some kind of type-theoretic

foundation, which makes a statically typed functional language a good match for mathematics as it is

practiced (for example, see HoTT [Uni13] and Lean [MU21]). However, one area where there seems to

be a big mismatch is in the distinction between types and sets.

To most mathematicians and every discrete mathematics textbook ever, {2,4,7} and N are both

examples of sets. The former is finite and the latter (countably) infinite, but they are both fundamentally

the same kind of thing, and it makes sense to talk about (for example) their difference, N−{2,4,7},

which is also a set. In DISCO, however, {2,4,7} and N are very different things: the former is a value

of type Set(N), whereas the latter is a type, and N−{2,4,7} is so nonsensical that it is a syntax error!

One might reasonably wonder: why the mismatch? Why not try to make DISCO more closely align with

common mathematical practice, in accordance with DISCO’s stated philosophy?

Although conflating sets and types might be fine on a theoretical level (at least, as long as one does

not worry about deeper foundational issues), on a practical level it introduces several big problems:

• The ability to use arbitrary finite sets as types would lead to what is essentially a system of re-

finement types. Although this is well-studied and has many practical motivations, it quickly leads

to undecidable typechecking, the need for tools like SMT solvers, and the requirement for users

to provide annotations to help the system understand why a given type is valid. For example, to

typecheck f : N -> {2,3,7} would require somehow checking that for any natural number in-

put, the function f will always return either 2, 3, or 7, which could depend on complex reasoning

about the behavior of the function. Calling out to an SMT solver in order to typecheck a teaching

language to be used by students seems like a non-starter.

• Conversely, the ability to use types as value-level sets introduces all sorts of difficulties, chief

among which is the fact that most types correspond to infinite sets. Set values would have to be

represented at runtime as some kind of abstract set expressions rather than simply as sets of values,

and operations like membership checking become only semi-decidable at best. What’s more, these

infinite set values would not really correspond to their supposed mathematical counterparts in some

B. A. Yorgey 79

subtle ways. For example—as we often teach discrete mathematics students—the power set of the

natural numbers is uncountable; but if N were usable as a value of type Set(N) in DISCO, then

power(N) would actually represent the set of computable subsets of N, which is countable!

The one slight blurring of categories which seems both feasible and desirable would be the ability

to use finite set values as domains for ∀ and ∃ property quantifiers, so one could write, for example,

forall x in [0..10]. x^2 <= 100. It seems theoretically straightforward to incorporate such finite

sets into the existing machinery for property checking, though this has not been done yet.

In any case, how should we present and explain the relevant distinctions to students? Honestly, I’m

not entirely sure. My best approach at the moment revolves around two ideas:

• First, explain to students that DISCO can only represent finite sets. This is easy enough to under-

stand: if we allowed infinite sets, then certain operations might require infinitely long computa-

tions.

• We can then explain that types can be thought of as a particular collection of “ur-sets” out of which

we can build and carve out all other sets. For particularly keen students, we can explain that types

are sets with particularly nice structural properties. For example, N is the unique set that includes

0 and is closed under the successor operation; in contrast, there is no nice structural way to define

{2,4,7} besides just listing its elements. These nice structural properties are precisely what enable

decidable typechecking without having to resort to SMT solvers.

3.5 Formal proofs

A discrete mathematics course often includes an introduction to proof writing. Currently, Disco only

helps with this indirectly: it helps students practice expressing themselves formally, and property-based

testing can give early feedback to see whether a particular proposition is worth trying to prove. Ideally,

however, there would be a way to use Disco more directly in constructing formal proofs, or a way to

integrate it with existing tools for doing so.

3.6 Error messages

When the DISCO project first started, I had grand designs for the way the system would interact with the

user in the case of type errors [YEEI18]. Unfortunately, partly because I was intimidated by my own

grand designs, and partly because error messages are hard, the system currently does not have very good

error messages! For example, here is a terribly uninformative one:

Disco> each(3, [1,2,3])

Error: the shape of two types does not match.

https://disco-lang.readthedocs.io/en/latest/reference/shape-mismatch.html

In practice, I just tell students to ask me for help when they run into errors they can’t figure out, but this

obviously limits wider adoption. Improving error messages will be another big focus for work in the

upcoming year.

4 Acknowledgments

DISCO was originally born out of a conversation with Harley Eades at TFPIE in 2016, and I’m very

grateful to Harley for those initial conversations and many good ideas. I am also grateful to the many

80 DISCO: A Functional Programming Language for Discrete Mathematics

people who have contributed to the DISCO codebase over the years, including my students Callahan

Hirrel, Bosco Ndemeye, Sanjit Kalapatapu, Jacob Hines, Eric Pinter, and Daniel Burnett, as well as

other collaborators including Shay Lewis, Ryan Yates, Tristan de Cacqueray, and Chris Smith.

References

[CH00] Koen Claessen & John Hughes (2000): QuickCheck: a lightweight tool for random testing of Haskell

programs. In: Proceedings of the fifth ACM SIGPLAN international conference on Functional program-

ming, pp. 268–279, doi:10.1145/351240.351266.

[CM13] Association for Computing Machinery (2013): Computer Science Curricula 2013: Curriculum Guide-

lines for Undergraduate Degree Programs in Computer Science, doi:10.1145/2534860. Available at

http://www.acm.org/education/CS2013-final-report.pdf.

[DE04] Kees Doets & Jan van Eijck (2004): The Haskell Road to Logic, Maths, and Programming. Texts in

Computing. King’s College Publications.

[Gol91] David Goldberg (1991): What every computer scientist should know about floating-point arithmetic.

ACM computing surveys (CSUR) 23(1), pp. 5–48, doi:10.1145/103162.103163.

[Hen02] P. B. Henderson (2002): Functional and declarative languages for learning discrete mathematics. Tech-

nical Report 0210, University of Kiel.

[Lib07] Liberal Arts Computer Science Consortium (2007): A 2007 Model Curriculum for a Liberal Arts Degree

in Computer Science. J. Educ. Resour. Comput. 7(2), doi:10.1145/1240200.1240202.

[MU21] Leonardo de Moura & Sebastian Ullrich (2021): The Lean 4 theorem prover and program-

ming language. In: International Conference on Automated Deduction, Springer, pp. 625–635,

doi:10.1007/978-3-030-79876-5_37.

[OEI22] OEIS Foundation Inc. (2022): The On-Line Encyclopedia of Integer Sequences. Available at

http://oeis.org/.

[OHP06] John O’Donnell, Cardelia Hall & Rex Page (2006): Discrete Mathematics Using a Computer. Springer-

Verlag London.

[SW02] C. Scharff & A. Wildenberg (2002): Teaching discrete structures with SML. Technical Report, University

of Kiel.

[TBN11] Dmitriy Traytel, Stefan Berghofer & Tobias Nipkow (2011): Extending Hindley-Milner type inference

with coercive structural subtyping. In: Asian Symposium on Programming Languages and Systems,

Springer, pp. 89–104, doi:10.1007/978-3-642-25318-8_10.

[Uni13] The Univalent Foundations Program (2013): Homotopy Type Theory: Univalent Foundations of Mathe-

matics. https://homotopytypetheory.org/book, Institute for Advanced Study.

[Van11] Thomas VanDrunen (2011): The Case for Teaching Functional Programming in Discrete Math. In:

Proceedings of the ACM International Conference Companion on Object Oriented Programming Sys-

tems Languages and Applications Companion, OOPSLA ’11, ACM, New York, NY, USA, pp. 81–86,

doi:10.1145/2048147.2048180.

[Van13] Thomas VanDrunen (2013): Discrete mathematics and functional programming. Franklin, Beedle &

Associates Incorporated.

[Van17] Thomas VanDrunen (2017): Functional Programming as a Discrete Mathematics Topic. ACM Inroads

8(2), p. 51–58, doi:10.1145/3078325.

[Wai92] Roger L. Wainwright (1992): Introducing Functional Programming in Discrete Mathematics. In: Pro-

ceedings of the Twenty-third SIGCSE Technical Symposium on Computer Science Education, SIGCSE

’92, ACM, New York, NY, USA, pp. 147–152, doi:10.1145/135250.134540.

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/2534860
http://www.acm.org/education/CS2013-final-report.pdf
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/1240200.1240202
https://doi.org/10.1007/978-3-030-79876-5_37
http://oeis.org/
https://doi.org/10.1007/978-3-642-25318-8_10
https://homotopytypetheory.org/book
https://doi.org/10.1145/2048147.2048180
https://doi.org/10.1145/3078325
https://doi.org/10.1145/135250.134540

B. A. Yorgey 81

[Xin08] Cong-Cong Xing (2008): Enhancing the Learning and Teaching of Functions Through Programming in

ML. J. Comput. Sci. Coll. 23(4), pp. 97–104, doi:10.5555/1352079.1352096.

[YEEI18] Brent A. Yorgey, Richard A. Eisenberg & Harley D. Eades III (2018):

Explaining Type Errors. In: Off The Beaten Track. Available at

https://popl18.sigplan.org/details/OBT-2018/8/Explaining-Type-Errors.

https://doi.org/10.5555/1352079.1352096
https://popl18.sigplan.org/details/OBT-2018/8/Explaining-Type-Errors

	Introduction
	Disco by Example
	Greatest common divisor
	Primality testing
	Z-order
	Finite sets
	Trees and Catalan numbers
	Defining and testing bijections

	Discussion and Future Work
	Syntax
	Student experience
	Type system
	Types vs sets
	Formal proofs
	Error messages

	Acknowledgments

