
Polynomial Functors Constrained by Regular
Expressions

Dan Piponi1 and Brent A. Yorgey2

1 Google, dpiponi@gmail.com
2 Williams College, byorgey@gmail.com

Abstract. We show that every regular language, via some DFA which
accepts it, gives rise to a homomorphism from the semiring of polynomial
functors to the semiring of n×n matrices over polynomial functors. Given
some polynomial functor and a regular language, this homomorphism can
be used to automatically derive a functor whose values have the same
shape as those of the original functor, but whose sequences of leaf types
correspond to strings in the language.

The primary interest of this result lies in the fact that certain regular
languages correspond to previously studied derivative-like operations on
polynomial functors, which have proven useful in program construction.
For example, the regular language a∗ha∗ yields the derivative of a poly-
nomial functor, and b∗ha∗ its dissection. Using our framework, we are
able to unify and lend new perspective on this previous work. For ex-
ample, it turns out that dissection of polynomial functors corresponds
to taking divided differences of real or complex functions, and, guided
by this parallel, we show how to generalize binary dissection to n-ary
dissection.

Keywords: polynomial, functors, regular expressions, differentiation,
dissection

1 Introduction

Consider the standard polymorphic singly-linked list type, which can be defined
in Haskell [8] as:

data List a = Nil
| Cons a (List a)

This type is homogeneous, meaning that each element in the list has the same
type as every other element.

Suppose, however, that we wanted lists with a different constraint on the
types of its elements. For example, we might want lists whose elements alternate
between two types a and b, beginning with a and ending with b.

One way to encode such an alternating list is with a pair of mutually recursive
types, as follows:

������

Fig. 1. A list with alternating types

data List1 a b = Nil1
| Cons1 a (List2 a b)

data List2 a b = Cons2 b (List1 a b)

The required type is List1 a b: a value of type List1 a b must be either empty
(Nil1) or contain a value of type a, followed by a value of type b, followed
recursively by another List1 a b.

In fact, we can think of List1 a b as containing values whose shape cor-
responds to the original List type (that is, there is a natural embedding from
List1 a a into List a, i.e. an injective polymorphic function ∀a.List1 a a →
List a), but whose sequence of element types corresponds to the regular expres-
sion (ab)∗, that is, any number of repetitions of the sequence ab.

We can easily generalize this idea to regular expressions other than (ab)∗

(though constructing the corresponding types may be complicated). We can also
generalize to algebraic data types other than List , by considering the sequence of
element types encountered by a canonical inorder traversal of each data structure
[10]. That is, in general, given some algebraic data type and a regular expression,
we consider the problem of constructing a corresponding algebraic data type
“of the same shape” but with sequences of element types matching the regular
expression.

For example, consider the following type Tree of nonempty binary trees with
data stored in the leaves:

data Tree a = Leaf a
| Fork (Tree a) (Tree a)

Consider again the problem of writing down a type whose values have the same
shape as values of type Tree a, but where the data elements alternate between
two types a and b, beginning with a leftmost element of type a and ending with
a rightmost element of type b. An example can be seen in Fig. 2.

Suppose Tree12 a b is such a type. Values of type Tree12 a b cannot consist
solely of a leaf node: there must be at least two elements, one of type a and one
of type b. Hence a value of type Tree12 a b must be a fork consisting of two
subtrees. There are two ways this could happen. The left subtree could start
with a and end with b, in which case the right subtree must also start with a
and end with b. Or the left subtree could start with a and end with a, in which
case the right subtree must start with b and end with b. So we are led to define

data Tree12 a b = Fork12 (Tree12 a b) (Tree12 a b)
| Fork ′12 (Tree11 a b) (Tree22 a b)

��

��

�

�

��

Fig. 2. A tree with alternating leaf types

where Tree11 a b represents alternating trees with left and rightmost elements
both of type a, and similarly for Tree22.

Of course, we are now left with the task of defining Tree11 and Tree22, but
we can carry out similar reasoning: for example a Tree11 value can either be
a single leaf of type a, or a branch with a Tree12 and Tree11, or a Tree11 and
Tree21. All told, we obtain

data Tree11 a b = Leaf 11 a
| Fork11 (Tree12 a b) (Tree11 a b)
| Fork ′11 (Tree11 a b) (Tree21 a b)

data Tree22 a b = Leaf 22 b
| Fork22 (Tree22 a b) (Tree12 a b)
| Fork ′22 (Tree21 a b) (Tree22 a b)

data Tree21 a b = Fork21 (Tree22 a b) (Tree11 a b)
| Fork ′21 (Tree21 a b) (Tree21 a b)

Any tree of type Tree12 a b is now constrained to have alternating leaf node
types. For example, here are two values of type Tree12 Int Char :

ex 1, ex 2 :: Tree12 Int Char
ex 1 = Fork ′12 (Leaf 11 1) (Leaf 22 ’a’)
ex 2 = Fork ′12 (Fork11 ex 1 (Leaf 11 2)) (Leaf 22 ’b’)

ex 2 can also be seen in pictorial form in Fig. 3.
While this works, the procedure was somewhat ad hoc. We reasoned about

the properties of the pieces that result when a string matching (ab)∗ is split into
two substrings, and used this to find corresponding types for the subtrees. One
might wonder why we ended up with four mutually recursive types—is there
any simpler solution? And how well does this sort of reasoning extend to more
complicated structures or regular expressions? Our goal will be to derive a more
principled way to do this analysis for any regular language and any suitable
(polynomial) data type.

Fork ′12

Fork11

Fork ′12

Leaf 11 1 Leaf 22 "a"

Leaf 11 1

Leaf 22 "b"

Fig. 3. A tree with alternating leaf types

For certain languages, this problem has already been explored in the litera-
ture, though without being phrased in terms of regular languages. For example,
consider the regular language a∗ha∗. It matches sequences of as with precisely
one occurrence of h somewhere in the middle. Data structures whose inorder
sequence of element types matches a∗ha∗ have all elements of type a, except for
one which has type h. This corresponds to a zipper type [5] with elements of
type h at the ‘focus’; if we substitute the unit type for h, we get the derivative of
the original type [1] (Fig. 4). Likewise, the regular language b∗ha∗ corresponds
to dissection types [9].

��

��

�

�

��

Fig. 4. A tree corresponding to the regular language a∗ha∗

Zippers, derivatives and dissections are usually described using Leibniz rules
and their generalizations. We’ll show how these rules can be placed in a more
general framework applying to any regular language.

In the remainder of the paper, we first review some standard results about
regular languages and DFAs (Sect. 2). We describe our framework informally
(Sect. 3) and give some examples of its application (Sect. 4) and describe an
alternative encoding which can be more convenient in practice (Sect. 5). We con-
clude with a discussion of derivatives (Sect. 6) and divided differences (Sect. 7).

2 Regular Expressions and DFAs

We begin with a review of the basic theory of regular languages and deterministic
finite automata in Sections 2.1–2.3. Readers already familiar with this theory
may safely skip these sections. In Section 2.4 we introduce some preliminary
material on star semirings which, though not novel, may not be as familiar to
readers.

2.1 Regular Expressions

A regular expression [6] over an alphabet Σ is a term of the following grammar:

R ::= • | ε | a ∈ Σ | R+R | RR | R∗ (1)

When writing regular expressions, we allow parentheses for disambiguation,
and adopt the common convention that Kleene star (R∗) has higher precedence
than concatenation (RR), which has higher precedence than alternation (R+R).

Semantically, we can interpret each regular expression R as a set of strings
JRK ⊆ Σ∗, where Σ∗ denotes the set of all finite sequences built from elements
of Σ. In particular,

– J•K = ∅ denotes the empty set.
– JεK = {ε} denotes the singleton set containing the empty string.
– JaK = {a} denotes the singleton set containing the length-1 sequence a.
– JR1 +R2K = JR1K ∪ JR2K.
– JR1R2K = JR1K JR2K, where L1L2 denotes pairwise concatenation of sets,

L1L2 = {s1s2 | s1 ∈ L1, s2 ∈ L2}.

– JR∗K = JRK∗, where L∗ denotes the least fixed point solution of

L∗ = {ε} ∪ LL∗.

Note that such a least fixed point must exist by the Knaster-Tarski theo-
rem [18], since the mapping ϕ(S) = {ε} ∪ LS is monotone, that is, if S ⊆ T
then ϕ(S) ⊆ ϕ(T).

Finally, a regular language over the alphabet Σ is a set L ⊆ Σ∗ which is the
interpretation L = JRK of some regular expression R.

2.2 DFAs

A deterministic finite automaton (DFA) is a quintuple (Q,Σ, δ, q0,A) consisting
of

– a nonempty set of states Q,
– a set of input symbols Σ,
– a transition function δ : Q×Σ → Q,

– a distinguished start state q0 ∈ Q, and

– a set A ⊆ Q of accept states. (One often sees F used to represent the set of
accept or “final” states, but this would conflict with our use of F to represent
functors later.)

We can “run” a DFA on an input string by feeding it symbols from the string
one by one. When encountering the symbol s in state q, the DFA changes to state
δ(q, s). If a DFA beginning in its start state q0 ends in state q′ after being fed a
string in this way, we say the DFA accepts the string if q′ ∈ A, and rejects the
string otherwise. Thus, a DFA D can be seen as defining a subset LD ⊆ Σ∗ of
the set of all possible strings, namely, those strings which it accepts.

We can draw a DFA as a directed multigraph where each graph edge is labeled
by a symbol from Σ. Each state is a vertex, and an edge is drawn from q1 to
q2 and labeled with symbol s whenever δ(q1, s) = q2. In addition, we indicate
accept states with a double circle, and always label the start state as 1. We
can think of the state of the DFA as “walking” through the graph each time it
receives an input. Fig. 5 shows an example.

�

���

���

�

�

�

�

�

�

Fig. 5. An example DFA

It is convenient to allow the transition function δ to be partial. Operationally,
encountering a state q and input s for which δ(q, s) is undefined corresponds to
the DFA rejecting its input. This often simplifies matters, since we may omit
“sink states” from which there is no path to any accepting state, making δ unde-
fined whenever it would have otherwise yielded such a sink state. For example,
the DFA from Fig. 5 may be simplified to the one shown in Fig. 6, by dropping
state 4.

���
�

�

�

�

Fig. 6. Example DFA, simplified

As is standard, we may define δ∗ : Q×Σ∗ ⇀ Q as an iterated version of δ:

δ∗(q, ε) = q (2)

δ∗(q, sω) = δ∗(δ(q, s), ω) (3)

If δ∗(q0, ω) = q1, then we say that the string ω “takes” or “drives” the DFA
from state q0 to state q1. More generally, given a string ω, we can partially apply
δ∗ to obtain a “driving function” χ : Q ⇀ Q which encodes how the string ω
drives the DFA: if the DFA starts in state q then after processing ω it will either
halt with an error or end in state χ(q).

2.3 Kleene’s Theorem

Connecting the previous two sections is Kleene’s Theorem, which says that the
theory of regular expressions and the theory of DFAs are really “about the same
thing”. In particular, the set of strings accepted by a DFA is always a regular
language, and conversely, for every regular language there exists a DFA which
accepts it. Moreover, the proof of the theorem is constructive: given a regular
expression, we may algorithmically construct a corresponding DFA, and vice
versa. For example, the regular expression b∗ha∗ corresponds to the DFA shown
in Fig. 7. It is not hard to verify that strings taking the DFA from state 1 to
state 2 (the accept state) are precisely those matching the regular expression
b∗ha∗.

��

�

�

�

Fig. 7. A DFA for b∗ha∗

The precise details of these constructions are not important for the purposes
of this paper; interested readers should consult a reference such as Sipser [15].

We note in passing that one can also associate nondeterministic finite automata
(NFAs) to regular expressions, and the remainder of the story of this paper could
probably be retold using NFAs. However, it is not clear whether we would gain
any benefit from making this generalization, so we will stick with the simpler
notion of DFAs.

2.4 Semirings

A semiring is a set R equipped with two binary operations, + and ·, and two
distinguished elements, 0, 1 ∈ R, such that

– (+, 0) is a commutative monoid (that is, 0 is an identity for +, and + is
commutative and associative),

– (·, 1) is a monoid,

– · distributes over + from both the left and the right, that is, a · (b + c) =
a · b+ a · c and (b+ c) · a = b · a+ c · a, and

– 0 is an annihilator for ·, that is r · 0 = 0 · r = 0 for all r ∈ R.

Examples of semirings include:

– (Bool ,∨,False,∧,True), boolean values under disjunction and conjunction;

– (N,+, 0, ·, 1), the natural numbers under addition and multiplication;

– (R+ ∪ {−∞},max,−∞,+, 0), the nonnegative real numbers (adjoined with
−∞) under maximum and addition;

– the set of regular languages forms a semiring under the operations of union
and pairwise concatenation, with 0 = ∅ and 1 = {ε}.

A star semiring or closed semiring [7] has an additional operation, (−)∗,
satisfying the axiom

r∗ = 1 + r · r∗ = 1 + r∗ · r , (4)

for all r ∈ R. Intuitively, r∗ = 1+r+r2+r3+. . . (although such infinite sums do
not necessarily make sense in all semirings). The semiring of regular languages
is closed, via Kleene star.3

If R is a semiring, then the set of n× n matrices with elements in R is also
a semiring, where matrix addition and multiplication are defined in the usual
manner in terms of addition and multiplication in R. If R is a star semiring,
then a star operator can also be defined for matrices; for details see Lehmann
[7] and Dolan [2].

Finally, a semiring homomorphism is a mapping from the elements of one
semiring to another that preserves the semiring structure, that is, that sends 0
to 0, 1 to 1, and preserves addition and multiplication.

3 In fact, regular languages (and several of the other examples above) form Kleene al-
gebras, which essentially add to a star semiring the requirement that + is idempotent
(a+ a = a). However, for our purposes we do not need the extra restriction.

3 DFAs and Matrices of Functors

Viewing regular expressions through the lens of DFAs gives us exactly the tools
we need to generalize our ad hoc analysis from the introduction.

3.1 A More Principled Derivation

Consider again the task of encoding a type with the same shape as

data Tree a = Leaf a
| Fork (Tree a) (Tree a)

whose sequence of element types matches the regular expression (ab)∗, as in the
introduction. This time, however, we will think about it from the point of view
of the corresponding DFA, shown in Fig. 8.

��
�

�

Fig. 8. A DFA for (ab)∗

The key is to consider not just the data type we are ultimately interested
in—in this case, those trees which take the DFA from state 1 to itself—but an
entire family of related types. In particular, let Tij a b denote the type of binary
trees whose element type sequences take the DFA from state i to state j. Since
the DFA has two states, there are four such types:

– T11 a b — this is the type of trees we are primarily interested in constructing,
whose leaf sequences match (ab)∗.

– T12 a b — trees of this type have leaf sequences which take the DFA from
state 1 to state 2; that is, they match the regular expression a(ba)∗ (or,
equivalently, (ab)∗a).

– T21 a b — trees matching b(ab)∗.
– T22 a b — trees matching (ba)∗.

What does a tree of type T11 look like? It cannot be a leaf, because a single
leaf takes the DFA from state 1 to 2 or vice versa. It must be a pair of trees,
which together take the DFA from state 1 to state 1. There are two ways for
that to happen: both trees could themselves begin and end in state 1; or the first
tree could take the DFA from state 1 to state 2, and the second from state 2 to
state 1. We can carry out a similar analysis for the other three types. In fact, we
have already carried out this exact analysis in the introduction, but it is now a

bit less ad hoc. In particular, we can now see that we end up with four mutually
recursive types precisely because the DFA for (ab)∗ has two states, and we need
one type for each ordered pair of states.

In general, given a DFA with states Q and alphabet Σ = {a1, . . . , an}, we
get a mutually recursive family of types

Tij a1 . . . an

indexed by a pair of states from Q and by one type argument for each alphabet
symbol. We are ultimately interested in types of the form Tq0k where k ∈ A,
that is, types which are indexed by the start state and some accept state of the
DFA.

Though shifting our point of view to DFAs has given us a better framework
for determining which types we must define, we still had to reason on a case-by-
case basis to determine the definitions of these types. The next two sections show
how we can concisely and elegantly formalize this process in terms of matrices.

3.2 Polynomial Functors

We now abstract away from the particular details of Haskell data types and
work in terms of a simple language of polynomial functors. We inductively define
the universe Fun of polynomial functors as follows, simultaneously giving both
syntax and semantics.

– KA ∈ Fun denotes the constant functor KA a = A, which ignores its argu-
ment and yields A.

– X ∈ Fun denotes the identity functor X a = a.
– Given F,G ∈ Fun, we can form their sum, F +G ∈ Fun, with (F +G) a =
F a+G a.

– We can also form products of functors, (F × G) a = F a × G a. We often
abbreviate F ×G as FG.

– Finally, we allow functors to be defined by mutually recursive systems of
equations 

F1 = Φ1(F1, . . . , Fn)
...

Fn = Φn(F1, . . . , Fn),

where each Φk is a polynomial functor expression with free variables in
{F1, . . . , Fn}, and interpret them using a standard least fixed point seman-
tics. For example, the single recursive equation L = 1 + X × L denotes the
standard type of (finite) polymorphic lists. As another example, the pair of
mutually recursive equations

E = KUnit +X ×O
O = X × E

defines the types of even- and odd-length polymorphic lists. Here, Unit de-
notes the unit type with a single inhabitant.

It is worth pointing out that functors form a semiring (up to isomorphism)
under + and ×, where 1 = KUnit and 0 = KVoid (Void denotes the type with
no inhabitants). We therefore will simply write 0 and 1 in place of KUnit and
KVoid . In fact, functors also form a star semiring, with the polymorphic list type
playing the role of the star operator, that is, F ∗ = 1 + F × F ∗.

The above language also generalizes naturally from unary to n-ary functors.
We write Funn for the universe of n-ary polynomial functors, so Fun = Fun1.

– KA a1 . . . an = A.
– The identity functor X generalizes to the family of projections Xm, where

Xm a1 . . . an = am.

That is, Xm is the functor which yields its mth argument, and may be
regarded as an n-ary functor for any n > m. More generally, the arguments
to a functor can be labeled by the elements of some alphabet Σ, instead of
being numbered positionally, and we write FunΣ for the universe of such
functors. In that case, for a ∈ Σ we write Xa for the projection which picks
out the argument labeled by a.

– (F +G) a1 . . . an = (F a1 . . . an) + (G a1 . . . an).
– (F ×G) a1 . . . an = (F a1 . . . an)× (G a1 . . . an).
– Recursion also generalizes straightforwardly.

Of course, n-ary functors also form a semiring for any n.
As an example, the Haskell type

data S a b = Apple a | Banana b | Fork (S a b) (S a b)

corresponds to the bifunctor (that is, 2-ary functor) S = Xa + Xb + S × S; we
may also abbreviate S × S as S2.

By induction over functor descriptions, we may define S : FunΣ → P(Σ∗)
which gives the sequences of leaf types that can occur in the values of a given
functor. Thinking of values of a given functor as trees, S(−) corresponds to an
inorder traversal. That is:

S(0) = ∅
S(KA) = {ε} (A 6= Void)

S(Xa) = {a}
S(F +G) = S(F) ∪ S(G)

S(F ×G) = S(F)S(G)

Finally, given a system Fm = Φm(F1, . . . , Fn) we simply set

S(Fm) = S(Φm(F1, . . . , Fn))

for each m, and take the least fixed point (ordering sets by inclusion). For ex-
ample, given the list functor L = 1 +XL, we obtain

S(L) = {ε} ∪ {1σ | σ ∈ S(L)}

whose least fixed point is the infinite set {ε, 1, 11, 111, . . . } as expected.

3.3 Matrices of Functors

Now suppose we have a unary functor F and some DFA D = (Q,Σ, δ, q0,A).
Let Fij ∈ FunΣ denote the type with the same shape as F but whose sequences
of leaf types take D from state i to state j. We are ultimately interested in
constructing ∑

k∈A

Tq0k,

the sum of all types Tij whose leaf sequences start in state q0 and tahe the
DFA to some accept state. Note that Fij has arity Σ, that is, there is a leaf type
corresponding to each alphabet symbol of D. We can deduce Fij compositionally,
by recursion on the syntax of functor expressions.

– The constant functor KA creates structures containing no elements, i.e.
which do not cause the DFA to transition at all. So the only way a KA-
structure can take the DFA from state i to state j is if i = j:

(KA)ij =

{
KA i = j

0 i 6= j
(5)

As a special case, the functor 1 = KUnit yields

1ij =

{
1 i = j

0 i 6= j
. (6)

– A value with shape F + G is either a value with shape F or a value with
shape G; so the set of F +G shapes taking the DFA from state i to state j
is the disjoint sum of the corresponding F and G shapes:

(F +G)ij = Fij +Gij . (7)

– Products are more interesting. An FG-structure consists of an F -structure
paired with a G-structure, whose leaf types drive the DFA in sequence.
Hence, in order to take the DFA from state i to state j overall, the F -
structure must take the DFA from state i to some state k, and then the
G-structure must take it from k to j. This works for any state k, so (FG)ij
is the sum over all such possibilities. Thus,

(FG)ij =
∑
k∈Q

FikGkj . (8)

– Finally, for a recursive system of functors

Fm = Φm(F1, . . . , Fn),

we may mutually define

(Fm)ij = (Φm(F1, . . . , Fn))ij ,

interpreted via the same least fixed point semantics.

The above rules for 1, sums, and products might look familiar: in fact, they
are just the definitions of the identity matrix, matrix addition, and matrix prod-
uct. That is, given some functor F and DFA D, we can arrange all the Fij in a
matrix, [F]D, whose (i, j)th entry is Fij . (We also write simply [F] when D can
be inferred.) Then we can rephrase (6)–(8) above as

– [1]D = I|Σ|, that is, the |Σ| × |Σ| identity matrix, with ones along the main
diagonal and zeros everywhere else;

– [F +G]D = [F]D + [G]D; and
– [FG]D = [F]D [G]D.

So far, given a DFA D, we have the makings of a homomorphism from the
semiring of arity-1 functors to the semiring of |Q|× |Q| matrices of arity-Σ func-
tors. However, there is still some unfinished business, namely, the interpretation
of [X]D. This gets at the heart of the matter, and to understand it, we must
take a slight detour.

3.4 Transition Matrices

Given a simple directed graph G with n nodes, its adjacency matrix is an n× n
matrix MG with a 1 in the i, j position if there is an edge from node i to node
j, and a 0 otherwise. It is a standard observation that the mth power of MG

encodes information about length-m paths in G; specifically, the i, j entry of Mm
G

is the number of distinct paths of length m from i to j. This is because a path
from i to j of length m is the concatenation of a length-(m− 1) path from i to
some k followed by an edge from k to j, so the total number of length-m paths
is the sum of such paths over all possible k; this is exactly what is computed by
the matrix multiplication Mm−1

G M = Mm
G .

However, as observed independently by O’Connor [11] and Dolan [2], and as
is standard weighted automata theory [3], this can be generalized by parameter-
izing the construction over an arbitrary semiring. In particular, we may suppose
that the edges of G are labeled by elements of some semiring R, and form the
adjacency matrix MG as before, but using the labels on edges, and 0 ∈ R for
missing edges. The mth power of MG still encodes information about length-m
paths, but the interpretation depends on the specific choice of R and on the edge
labeling. Choosing the semiring (N,+, ·) with all edges labeled by 1 gives us a
count of distinct paths, as before. If we choose (Bool ,∨,∧) and label each edge
with True, the i, j entry of Mm

G tells us whether there exists any path of length
m from i to j. Choosing (R,min,+) and labeling edges with costs yields the
minimum cost of length-m paths; choosing (P(Σ∗),∪, ·) (that is, languages over
some alphabet Σ under union and pairwise concatenation) and labeling edges
with elements from Σ yields sets of words corresponding to length-m paths.

Moreover, if R is a star semiring, then M∗G encodes information about paths
of any length (recall that, intuitively, M∗G = I+MG+M2

G+M3
G+. . .). Choosing

R = (R,min,+) and computing M∗G thus solves the all-pairs shortest paths prob-
lem; (Bool ,∨,∧) tells us whether any paths exist between each pair of nodes; and

so on. Note that (N,+, ·) is not closed, but we can make it so by adjoining +∞;
this corresponds to the observation that the number of distinct paths between a
pair of nodes in a graph may be infinite if the graph contains any cycles.

Of course, DFAs can also be thought of as graphs. Suppose we have a DFA D,
a semiring R, and a function Σ → R assigning an element of R to each alphabet
symbol. In this context, we call the adjacency matrix for D a transition matrix.4

The graph of a DFA may not be simple, that is, there may be multiple edges in
a DFA between a given pair of nodes, each corresponding to a different alphabet
symbol. We can handle this by summing in R. That is, the transition matrix
MD is the |Q| × |Q| matrix over R whose component at i, j is the sum, over all
edges from i to j, of the R-values corresponding to their labels.

For example, consider the DFA in Fig. 6, and the semiring (N,+, ·). If we
send each edge label (i.e. alphabet symbol) to 1, we obtain the transition matrix0 1 0

1 0 1
0 1 0

 .
The mth power of this matrix tells us how many strings of length m take the
DFA from one given state to another. If we instead send each edge label to the
singleton language containing only that symbol as a length-1 string, as a member
of the semiring of regular languages, we obtain the transition matrix ∅ {a} ∅

{b} ∅ {a}
∅ {b} ∅

 .
The star of this matrix yields the complete set of strings that drives the DFA
between each pair of states.

We can now see how to interpret [X]D: it is the transition matrix for D, taken
over the semiring of arity-Σ functors, where each transition a is replaced by the
functor Xa. That is, in general, each entry of [X]D will consist of a (possibly
empty) sum of functors ∑

a∈Σ
δ(i,a)=j

Xa.

By definition, these will drive the DFA in the proper way; moreover, sums of Xa

are the only functors with the same shape as X.

4 Examples

To make things more concrete, we can revisit some familiar examples using
our new framework. As a first example, consider the regular expression (aa)∗,

4 Textbooks on automata often define the transition matrix for a DFA as the |Q|×|Σ|
matrix with its q, s entry equal to δ(q, s). This is just a particular representation of
the function δ, and quite uninteresting, so we co-opt the term transition matrix to
refer to something more worthwhile.

corresponding to the DFA shown in Fig. 9, along with the standard polymorphic
list type, L = 1 +XL. The matrix for L can be written

[L] =

[
L11 L12

L21 L22

]
.

The punchline is that we can take the recursive equation for L and simply apply

��
�

�

Fig. 9. A DFA for (aa)∗

the homomorphism to both sides, resulting in the matrix equation

[L] = [1 +XL] = [1] + [X] [L] ,

where [X] is the transition matrix for D, namely

[X] =

[
0 Xa

Xa 0

]
.

Expanding out this matrix equation and performing the indicated matrix oper-
ations yields[

L11 L12

L21 L22

]
=

[
1 0
0 1

]
+

[
0 Xa

Xa 0

] [
L11 L12

L21 L22

]
=

[
1 +XaL21 XaL22

XaL11 1 +XaL12

]
.

We can see that L11 and L22 are isomorphic, as are L12 and L21; this is
because the DFA D has a nontrivial automorphism (ignoring start and accept
states). Thinking about the meaning of paths through the DFA, we see that
L11 is the type of lists with even length, and L21, lists with odd length. More
familiarly:

data EvenList a = EvenNil | EvenCons a (OddList a)
data OddList a = OddCons a (EvenList a)

As another example, consider again the recursive tree type given by T = X+T 2,
along with the two-state DFA for (ab)∗ shown in Fig. 8. Applying the homomor-
phism, we obtain

[T] =
[
X + T 2

]
= [X] + [T]

2
,

where

[X] =

[
0 Xa

Xb 0

]
.

This yields[
T11 T12

T21 T22

]
=

[
0 Xa

Xb 0

]
+

[
T11 T12

T21 T22

]2
=

[
T 2

11 + T12T21 Xa + T11T12 + T12T22

Xb + T21T11 + T22T21 T21T12 + T 2
22

]
.

Equating the left- and right-hand sides elementwise yields precisely the defini-
tions for Tij we derived in Section 1.

As a final example, consider the type T = X + T 2 again, but this time

constrained by the regular expression b∗ha∗, with transition matrix

[
Xb Xh

0 Xa

]
.

Applying the homomorphism yields[
T11 T12

T21 T22

]
=

[
Xb Xh

0 Xa

]
+

[
T11 T12

T21 T22

]2
=

[
Xb + T 2

11 + T12T21 Xh + T11T12 + T12T22

T21T11 + T22T21 Xa + T21T12 + T 2
22

]
.

Here something strange happens: looking at the DFA, it is plain that there are
no paths from state 2 to state 1, and we therefore expect the corresponding
type T21 to be empty. However, it does not look empty at first sight: we have
T21 = T21T11+T22T21. In fact, it is empty, since we are interpreting recursively
defined functors via a least fixed point semantics, and it is not hard to see that
0 is in fact a fixed point of the above equation for T21. In practice, we can
perform a reachability analysis for a DFA beforehand (e.g. by taking the star of
its transition matrix under (Bool ,∨,∧)) to see which states are reachable from
which other states; if there is no path from i to j then we know Tij = 0, which
can simplify calculations. For example, substituting T21 = 0 into the above
equation and simplifying yields[

T11 T12

T21 T22

]
=

[
Xb + T 2

11 Xh + T11T12 + T12T22

0 Xa + T 2
22

]
.

5 An Alternative Representation

One way to look at the examples shown so far is that we have essentially had to
duplicate the initial functor F , resulting in several slightly different copies, each
with a slightly different set of “constructors”, in order to keep track of which con-
structors are allowed at which points. Such encodings would be extremely trying
to work with in practice, requiring much tedious case analysis. In a language
with a sufficiently expressive type system, however, we do not need to duplicate

anything, but can instead make use of types to dictate which constructors are
allowed in which situations.

What information, exactly, do we need to keep around at the level of types?
It is not enough to just index by a pair of DFA states; the problem is that each
constructor may correspond to multiple possible pairs of states. In fact, what we
need is to index by an entire driving function. Given some functor T , the idea is
to produce just a single n-ary functor Tχ indexed by a (total!) driving function
χ : Q→ Q. A value of type Tχ is a structure with a shape allowed by T , whose
sequence of leaf types, taken together, drives the DFA in the way encoded by χ.
The desired type can then be selected as the sum of all types indexed by driving
functions taking the start state to some accepting state.

For details of this encoding, see Yorgey [19]. Encoding driving functions and
their composition requires only natural numbers and lists, so they can be encoded
in any language which allows encoding these at the level of types.

The above approach requires indexing by total driving functions. As pointed
out by an anonymous reviewer, one can also index by relations which can en-
code partial driving functions. For example, considering again the DFA for b∗ha∗

shown in Fig. 7, and the tree type T = X + T 2, we have the following Haskell
code. States encodes the states of the DFA, and Trans encodes a relation on
states, with each constructor corresponding to an edge in the DFA. The original
Tree a type is transformed into Tree ′, where the Leaf constructor is parame-
terized by a transition, and the Fork constructor encodes a sum via existential
quantification of k . Tree ′ could also be parameterized over an arbitrary relation
of the appropriate kind, which allows constructing Tree variants constrained by
any DFA over an alphabet of size 3.

{-# LANGUAGE DataKinds, GADTs, KindSignatures, PolyKinds #-}
data States = S1 | S2

data Trans b h a :: State → State → ∗ where
B :: b → Trans b h a S1 S1

H :: h → Trans b h a S1 S2

A :: a → Trans b h a S2 S2

data Tree ′ :: ∗ → ∗ → ∗ → State → State → ∗ where
Leaf :: Trans b h a i j → Tree ′ r b h a i j
Fork :: Tree ′ r b h a i k → Tree ′ r b h a k j → Tree ′ r b h a i j

6 Derivatives, Again

Now that we have seen the general framework, let’s return to the specific appli-
cation of computing derivatives of data types. In order to compute a derivative,
we need the DFA for the regular expression a∗ha∗, shown in Fig. 10. The corre-
sponding transition matrix is

[X] =

[
Xa Xh

0 Xa

]
.

��

�

�

�

Fig. 10. A DFA for derivatives

Suppose we start with a functor defined as a product:

F = GH

Expanding via the homomorphism to matrices of bifunctors, we obtain[
F11 F12

0 F22

]
=

[
G11 G12

0 G22

] [
H11 H12

0 H22

]
(the occurrences of 0 correspond to the observation that there are no paths in
the DFA from state 2 to state 1). Let’s consider each of the nonzero Fij in turn.
First, we have

F11 = G11 ×H11

F11 is simply the type of structures whose leaves take the DFA from state 1
to itself and so whose leaves match the regular expression a∗; hence we have
F11 a h ∼= F a (and similarly for G11, H11, F22, G22, and H22). We also have

F12 = G11H12 +G12H22
∼= GH12 +G12H.

This looks suspiciously like the usual Leibniz law for the derivative of a product
(i.e. the “product rule” for differentiation). We also know that

112 = 0

and
X12 = Xh,

and if F = G+H then F12 = G12+H12. If we substitute the unit type for h, these
are precisely the rules for differentiating polynomials. So F12 is the derivative of
F .

There is another way to look at this. Write

[X] =

[
Xa Xh

0 Xa

]
= XaI + d

where

d =

[
0 Xh

0 0

]

Note that d2 = 0. Note also that

(XaI)d =

[
0 XaXh

0 0

]
and

d(XaI) =

[
0 XhXa

0 0

]
.

Treating the product of functors as commutative is problematic in our setting,
since we care about the precise sequence of leaf types. However, in this particular
instance, we can specify that Xh commutes with everything, which corresponds
to letting the “hole” of type h “float” to the outside—typically, when construct-
ing a zipper structure, one does this anyway, storing the focused element sepa-
rately from the rest of the structure. Under this interpretation, then, (XaI) and
d commute even though matrix multiplication is not commutative in general.
We then note that

(XaI + d)n = (XaI)n + n(XaI)n−1d,

making use of this special commutativity and the fact that d2 = 0, annihilating
all the subsequent terms. We can linearly extend this to an entire polynomial f ,
that is,

f([X]) = f(XaI + d)

= f(XaI) + f ′(XaI)d

=

[
f(Xa) 0

0 f(Xa)

]
+

[
0 f ′(Xa)Xh

0 0

]
The matrix d is thus playing a role similar to an “infinitesimal” in calculus,
where the expression dx is manipulated informally as if (dx)2 = 0. (Compare
with the dual numbers described by [16].)

7 Dissection and Divided Differences

Consider again the regular expression b∗ha∗. Data structures with leaf sequences
matching this pattern have a “hole” of type h, with values of type b to the left
of the hole and values of type a to the right (Fig. 11).5

7.1 Dissection

Such structures have been considered by McBride [9], who refers to them as
dissections and shows how they can be used, for example, to generically derive
tail-recursive maps and folds.

5 Typically we substitute the unit type for h, but it makes the theory work more
smoothly if we represent it initially with a unique type variable.

��

��

�

�

��

Fig. 11. A tree with leaf sequence matching b∗ha∗

Given a functor F , McBride uses F to denote the bifunctor which is the
dissection of F (where the unit type has been substituted for h). We have

X b a = 1,

since a dissected X consists merely of a hole,

1 b a = 0,

and

(F +G) b a = F b a+ G b a.

The central construction is the Leibniz rule for dissection of a product,

(F ×G) = F × G+ F × G,

where (F) b a = F b and (F) b a = F a. That is, a dissection of an (F ×G)-
structure consists either of an F -structure containing only elements of the first
type paired with a G-dissection, or an F -dissection paired with a G-structure
containing only elements of the second type.

As a simple example, consider the polynomial functor L = 1 + XL of finite
lists. Intuitively, the dissection of a list should consist of a list of b’s, followed by
a hole, and then a list of a’s, that is,

L b a ∼= L b× L a.

Applying the rules above, we can derive

L b a = (1 +XL) b a

= (0 + X × L+ X × L) b a

= b× (L b a) + L a

and thus L b a ∼= L b× L a as expected.

7.2 Dissection via Matrices

The DFA recognizing b∗ha∗ is illustrated in Fig. 7, and has transition matrix[
Xb Xh

0 Xa

]
.

There are clearly no leaf sequences taking this DFA from state 2 to state 1; leaf
sequences matching b∗ or a∗ keep the DFA in state 1 or state 2, respectively;
and leaf sequences matching b∗ha∗ take the DFA from state 1 to state 2. That
is, under the homomorphism induced by this DFA, the functor F maps to the
matrix of bifunctors [

F F

0 F

]
.

Taking the product of two such matrices indeed yields[
F F

0 F

][
G G

0 G

]
=

[
F × G F × G+ F × G

0 F × G

]
,

as expected.

7.3 Divided Differences

Just as differentiation of types has an analytic analogue, dissection has an ana-
logue as well, known as divided difference. Let f : R → R be a real-valued
function, and let b, a ∈ R. Then the divided difference of f at b and a, notated6

fb,a, is defined by

fb,a =
fb − fa
b− a

,

where for consistency of notation we write fb for f(b), and likewise for fa. In the
limit, as a→ b, this yields the usual derivative of f .

We now consider the type-theoretic analogue of fb,a. We cannot directly
interpret subtraction and division of functors. However, if we multiply both
sides by (b − a) and rearrange a bit, we can derive an equivalent relationship
expressed in terms of only addition and multiplication, namely,

fa + fb,a × b = a× fb,a + fb.

This equation corresponds exactly to the isomorphism witnessed by McBride’s
function right ,

right : F a + (F b a, b)→ (a, F b a) + F b

6 Our notation is actually “backwards” with respect to the usual notation—what we
write as fb,a is often written f [a, b] or [a, b]f—in order to better align with the
combinatorial intuition discussed later.

We can now explain why the letters b and a are “backwards”. Intuitively, we can
think of a dissection as a “snapshot” of a data structure in the midst of a traver-
sal; values of type a are “unprocessed” and values of type b are “processed”.
The “current position” moves from left to right through the structure, turning
a values into b values. This is exactly what is accomplished by right : given a
structure full of unprocessed a values, or a dissected F with a focused b value, it
moves the focus right by one step, either focusing on the first unprocessed a, or
yielding a structure full of bs in the case that all the values have been processed.

7.4 Higher-Order Divided Differences

Higher-order divided differences, corresponding to higher derivatives, are defined
by the recurrence

fxn...x0 =
fxn...x1 − fxn−1...x0

xn − x0
. (9)

Alternatively, the higher-order divided differences of a function f can be arranged
in a matrix, as, for example,

cbaf =

fc fc,b fc,b,a
0 fb fb,a
0 0 fa

 (10)

in such a way as to be a semiring homomorphism, that is, cba(f + g) =

cbaf + cbag and cba(fg) = cbaf cbag, and so on. Proving that this yields
a definition equivalent to the recurrence (9) boils down to showing that if f = gh
then

fxn...x0
=

n∑
j=0

gxn...xj
hxj ...x0

. (11)

Proving (11) is not entirely straightforward; in fact, we conjecture that the com-
putational content of the proof, in the n = 2 case, essentially consists of (the
interesting part of) the implementation of the isomorphism right .

���

�

�

�

�

�

Fig. 12. A DFA for higher-order divided difference

If we now consider the DFA D in Fig. 12, we can see that (10) corresponds to
the matrix [F]D. More generally, a DFA consisting of a sequence of n states with

self-loops chained together by h transitions will have a transition matrix corre-
sponding to an order-n matrix of divided differences. In general, Fij will consist
of j − i holes interspersed among sequences of consecutive alphabet elements.

By analogy with the binary dissection case, we would expect (9) to yield an
isomorphism with type

xn−1...x0
F + (xn...x0

, xn)→ (x0, xn...x0
F) + xn...x1

F.

We have not yet been able to fully make sense of this, but hope to understand
it better in the future. In particular, our intuition is that this will yield a tail-
recursive implementation of a structure being processed by multiple coroutines.

8 Discussion and Future Work

This paper arose out of several blog posts by both authors [12][14][13][19], al-
though the content of this paper is neither a strict subset nor superset of the
content of the blog posts. There is much remaining to be explored, in particu-
lar understanding the isomorphisms induced by higher-order divided differences,
and generalizing this framework to n-ary functors and partial differentiation. It
seems likely that q-derivatives can also fruitfully be seen in a similar light [17].

There are several more practical aspects to this work that remain to be
explored. At a fundamental level, there would be some interesting engineering
work involved in turning this into a practical library. One might also wonder to
what extent it is possible to take operations on some polynomial functor T and
automatically lift them into operations on a constrained version of T . At the
very least this would require checking that the operation actually preserves the
given constraints.

Some of the ideas in this paper are implicitly present in earlier work; we
note in particular Duchon et al. [4, p. 590], who mention generating Boltzmann
samplers for strings corresponding to regular expressions, also via their DFAs.
It would be interesting to explore the relationship in more detail.

Acknowledgements. This work was partially supported by the National Sci-
ence Foundation, under NSF 1218002, CCF-SHF Small: Beyond Algebraic Data
Types: Combinatorial Species and Mathematically-Structured Programming.

Our sincere thanks to the anonymous reviewers, who had many helpful sug-
gestions. Thanks also to Lukas Mai for pointing out some errors in a draft.

References

1. Michael Abbott, Thorsten Altenkirch, Conor McBride, and Neil Ghani. ∂ for Data:
Differentiating Data Structures. Fundam. Inform., 65(1-2):1–28, 2005.

2. Stephen Dolan. Fun with semirings: a functional pearl on the abuse of linear
algebra. In ACM SIGPLAN Notices, volume 48, pages 101–110. ACM, 2013.

3. Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata.
Springer Science & Business Media, 2009.

4. Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltz-
mann samplers for the random generation of combinatorial structures. Combina-
torics, Probability and Computing, 13(4-5):577–625, 2004.

5. Gérard Huet. Functional pearl: The zipper. J. Functional Programming, 7:7–5,
1997.

6. Stephen Cole Kleene. Representation of events in nerve nets and finite automata.
Technical report, DTIC Document, 1951.

7. Daniel J Lehmann. Algebraic structures for transitive closure. Theoretical Com-
puter Science, 4(1):59–76, 1977.

8. Simon Marlow. Haskell 2010 Language Report. https://www.haskell.org/

onlinereport/haskell2010/, 2010.
9. Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissecting

data structures. In POPL, pages 287–295, 2008.
10. Conor McBride and Ross Paterson. Applicative programming with effects. Journal

of functional programming, 18(01):1–13, 2008.
11. Russell O’Connor. A very general method for computing shortest paths. http:

//r6.ca/blog/20110808T035622Z.html, 2011.
12. Dan Piponi. Finite Differences of Types. http://blog.sigfpe.com/2009/09/

finite-differences-of-types.html, 2009.
13. Dan Piponi. Constraining Types with Regular Expressions. http://blog.sigfpe.

com/2010/08/constraining-types-with-regular.html, 2010.
14. Dan Piponi. Divided Differences and the Tomography of Types. http://blog.

sigfpe.com/2010/08/divided-differences-and-tomography-of.html, 2010.
15. Michael Sipser. Introduction to the Theory of Computation. Cengage Learning,

2012.
16. Jeffrey Mark Siskind and Barak A. Pearlmutter. Nesting forward-mode ad in a

functional framework. Higher-Order and Symbolic Computation, 21(4):361–376,
2008.

17. Mike Stay. Q, Jokers, and Clowns. https://reperiendi.wordpress.com/2014/

08/05/q-jokers-and-clowns/, 2014.
18. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5(2):285–309, 1955.
19. Brent A. Yorgey. On a problem of sigfpe. https://byorgey.wordpress.com/2010/

08/12/on-a-problem-of-sigfpe/, 2010.

