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Lemma 5.20. Suppose that X is a collection of sets, and that |X| = κ and
sup

{ |Z| | Z ∈ X
}

= λ. Then |⋃ X| ≤ κ× λ.

Proof. By the well-ordering principle (AC), we can make an enumeration of X,

X = {Zα | α < κ }.

For each α, |Zα| = λα < λ. Again by the well-ordering principle, we can make
an enumeration of each Zα,

Zα = {uαβ | β < λα}.

Then we can write
⋃

X as
⋃

X = {uαβ | α < κ, β < λα },

which clearly has cardinality at most κ× λ. SDG

Remark. This result is in some sense a generalization of the fact that Q is count-
able, with one important difference. To show that the rationals are countable,
we just have to exhibit a bijection between the rationals (or, more simply, be-
tween N × N) and the naturals. From this result, it seems like it should follow
that if X is a countable collection of countable sets, then

⋃
X is also countable;

but to show this, we need the AC (which we don’t need to show the countability
of Q). Intuitively, this is because we need to be able to “pick” an ordering for
each Z ∈ X.

The above result is more general yet: instead of talking about a countable
union of countable sets, is about a cardinality-κ union of sets with cardinality
at most λ; the fact about countable sets in particular follows from the fact that
ω × ω = ω.

Lemma 5.21. For every ordinal α, there exists a strictly increasing cofinal map
from cf(α) to α.

Proof. Let g : cf(α) → α be a cofinal map. Then define f : cf(α) → α by

f(β) = max{g(β), sup
γ<β

(f(γ) + 1)}.

By definition, sup(rng(f)) ≥ sup(rng(g)) = α, so f is cofinal. f is also strictly
increasing: if β > γ, then f(β) > supγ<β f(γ) ≥ f(γ). SDG

Lemma 5.22. cf is idempotent.
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Proof. Let α, β, and γ be ordinals such that cf(α) = β and cf(β) = γ. By
Lemma 5.21, suppose f : β → α and g : γ → β are strictly increasing cofinal
maps. Let δ ∈ α. Since f is a cofinal map into α, there must be some ζ ∈ β for
which f(ζ) > δ. Likewise, there must be some η ∈ γ for which g(η) > ζ. Since
f is strictly increasing, we conclude that f(g(η)) > f(ζ) > δ; hence f ◦ g is a
cofinal map into α, and β = γ. SDG

Lemma 5.23. If α > 0 is a limit ordinal, then cf(α) is an infinite, regular
cardinal.

Proof. By definition, cf(α) is the least β for which there exists a cofinal map
f : β → α (that is, for which sup(rng(f)) = α). Suppose that cf(α) is not a
cardinal. Then there exists some γ < cf(α) such that γ ∼ cf(α), that is, there
exists some g : γ

1-1−−−→
onto

cf(α). But then f ◦ g : γ → α is also a cofinal map,

contradicting the minimality of cf(α). Also, cf(α) must be infinite since there
cannot exist a cofinal map from a finite set into an infinite one; cf(α) is regular
by Lemma 5.22. SDG

Theorem 5.24. For every κ ≥ ω, κ+ is regular. That is, ℵα+1 is regular for
all α.

Remark. To help provide some intuition for the relationship of this theorem to
Lemma 5.20, we can show the following special case, namely, that ω+ = ℵ1 is
regular.

Suppose otherwise, namely, that cf(ℵ1) = ω (note, by Lemma 5.23, that this
is the only choice for cf(ℵ1) if ℵ1 is not regular). That is, for some f : ω → ℵ1,
rng(f) is cofinal in ℵ1, i.e.,

⋃
rng(f) = ℵ1. Now, we note the following facts:

• | rng(f)| = ω. This is clear since dom(f) = ω.

• For every α ∈ rng(f), |α| ≤ ω. This follows since α ∈ ℵ1, so the biggest
its cardinality could possibly be is ℵ0 = ω.

Hence
⋃

rng(f) is a countable union of countable sets—but we know this is
countable, so it cannot be equal to ℵ1.

Proof. We now give a general proof of Theorem 5.24; it follows much the same
shape as the preceding remark.

For purposes of contradiction, suppose that ℵα+1 is not regular, that is, there
is some cofinal map f : ℵβ → ℵα+1 where β ≤ α. Then

⋃
rng(f) = ℵα+1. If

γ ∈ rng(f), then |γ| < ℵα+1. Therefore, | rng(f)| = ℵβ and sup(rng(f)) = ℵα,
so by Lemma 5.20, the cardinality of

⋃
rng(f) is α × β = max(α, β) < α + 1,

contradicting the cofinality of f . SDG

Remark. Theorem 5.24 asserts that all successor cardinals are regular. However,
it turns out that we can’t even prove that there exist any regular limit cardinals
(i.e., weakly inaccessible cardinals) other than ω!
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Recall that the Continuum Hypothesis posits that there is no cardinal inter-
mediate between ω and |P(ω)|; that is, there does not exist a set X such that
ω < |X| < |P(ω)|. Given the AC, we can reformulate this as the equality

2ℵ0 = ℵ1,

that is, |P(ω)| is the next cardinal after ℵ0.
This suggests what is known as the Generalized Continuum Hypothesis

(GCH):
∀κ, 2κ = κ+.

Note that in the presence of the GCH, “weakly inaccessible” and “strongly
inaccessible” are equivalent.

Using the model of constructible sets, Gödel in 1939 showed that ZF + AC
+ GCH is consistent if ZF is; it’s relatively clear what this system would look
like. However, Cohen showed that ZFC + ¬CH is consistent if ZF is; what does
ZFC look like with ¬CH? In fact, it turns out that for every α ≥ 0, ZFC +
(2ℵ0 = ℵα+1) is consistent if ZF is! Moreover, for every λ, if cf(λ) > ω, then
ZFC + (2ℵ0 = ℵλ) is consistent if ZF is. That is, 2ℵ0 could be ℵ1, or ℵ2, or
ℵω+1, but it could not be ℵω or ℵω+ω, and so on.

Let’s prove that cf(2ℵ0) > ω. Strangely enough, in light of the previous
remarks, this is just about all we can say about 2ℵ0 ! This will follow as a
corollary to Theorem 5.27.

Definition 5.25. Given a collection of sets Xi indexed by the elements of some
set I, we may form the sum

∑

i∈I

Xi =
⋃

i∈I

(Xi × {i}),

that is, the disjoint union of all the Xi’s, using the indices as tags.

Definition 5.26. Given a collection of sets Xi, we may also form the product
∏

i∈I

Xi = { f : I →
⋃

i∈I

Xi | ∀i ∈ I, f(i) ∈ Xi }.

That is,
∏

i Xi is the set of functions which pick out an element of Xi for each
i ∈ I. As an example, R3 =

∏
i∈{0,1,2} R is the set of functions that pick out a

real number for each of the three indices 0, 1, and 2; these can also be thought
of as ordered triples (although they are not actually triples in a technical sense).

Theorem 5.27 (König, 1905). Suppose that ∀i ∈ I, κi < λi. Then
∑

i∈I

κi <
∏

i∈I

λi.

Remark. We defer the proof of Theorem 5.27 to examine two corollaries.

Corollary 5.28 (Cantor’s Theorem (Theorem 5.5)).
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Proof. Let κi = 1 and λi = 2. Then
∑

i∈I 1 ∼ I, and
∏

i∈I 2 ∼ P(I). SDG

Corollary 5.29. cf(2ℵ0) > ω.

Proof. Let f : ω → 2ℵ0 , and for i ∈ ω let κi = |f(i)|; thus κi < 2ℵ0 . Also, let
λi = 2ℵ0 , for all i. Then

sup
i∈ω

κi ≤
∑

i∈ω

κi <
∏

i∈ω

λi = (2ℵ0)ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 . SDG

Proof. We now prove Theorem 5.27. Suppose we have a family of sets Zi, and
let λi = |Zi| and κi < λi for i ∈ I. Now let Z =

∏
i∈I Zi, and for each i ∈ I pick

(by the AC) some Yi ⊂ Z with |Yi| = κi. Then we will show that
⋃

i∈I Yi 6= Z,
from which the theorem follows immediately.

For each i ∈ I, define wi = { g(i) | g ∈ Yi }. Clearly |wi| ≤ κi < λi.
Therefore, Vi = Zi − wi 6= ∅, and

∏
i∈I Vi 6= ∅. (We note in passing that this is

another formulation of the AC—that the product of a nonempty collection of
nonempty sets is nonempty.)

But
∏

i∈I Vi ⊆ Z is disjoint from
⋃

i∈I Yi; hence
⋃

i∈I Yi 6= Z. SDG

Remark. This is a generalized “diagonal” argument, which explains why Can-
tor’s Theorem follows so readily as a corollary. Some additional commentary
should go here.
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