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7 The Axiom of Regularity

Remark. We will now move more towards logic. We want to be able to show
various independence results, such as that the consistency of ZF implies the
consistency of ZF + AC + CH (and also ZF + AC + ¬CH). In some sense we
can think of this as the “metamathematics” of set theory.

Definition 7.1 (Axiom of Regularity (Reg)). Every set has an ∈-minimal ele-
ment. Formally:

∀x.(∃y.y ∈ x) =⇒ ∃y.(y ∈ x ∧ (∀z.z ∈ y =⇒ z 6∈ x)).

Remark. This axiom implies that we cannot have a set x which is an element
of itself; then the set {x} does not satisfy the axiom. We also cannot have a
cyclic chain of inclusions x1 ∈ x2 ∈ x3 ∈ · · · ∈ x1, or an infinite descending
chain x1 3 x2 3 x3 3 . . . ; in either case, the set {x1, x2, x3, . . . } fails to satisfy
the axiom of regularity.

Note that we did not particularly need this axiom for the theory of Ord, Q,
R, and so on, since all of those classes are well-founded by definition. But it
will become convenient to restrict ourselves to well-founded sets when talking
about models of set theory.

One question to ask ourselves is, given Reg, could we still have non-well-
founded classes? The answer, it turns out, is no.

Definition 7.2. The transitive closure TC(x) of a set x is defined as follows:

x0 = x

xn+1 =
⋃

xn

TC(x) =
⋃
n∈ω

xn.

Lemma 7.3. TC(x) is the ⊆-least transitive set y such that x ⊆ y.

Proof. First we show that TC(x) is transitive. Suppose y ∈ TC(x), and z ∈ y.
By definition, y ∈ xn for some n ∈ ω. But then z ∈ xn+1; therefore, TC(x) is
transitive.

Now, if x ⊆ y and y is transitive, we will show that TC(x) ⊆ y. It suffices
to show that xn ⊆ y for all n, which we show by induction. The base case holds
by assumption. For the inductive case, suppose xm ⊆ y. Then if z ∈ xm+1, by
definition, z ∈ z′ ∈ xm for some z′; but then, since xm ⊆ y and y is transitive,
z ∈ y. SDG
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Lemma 7.4 (Regularity for classes).

∃x.ϕ(x) =⇒ ∃x.(ϕ(x) ∧ ∀y.(ϕ(y) =⇒ y 6∈ x))

Proof. Suppose ϕ is some predicate, and that ϕ(u) holds. Then define

z = {x | x ∈ TC(u) ∧ ϕ(x) }.
If z is empty, then u is ∈-minimal for ϕ. Otherwise, note that z is a set by
comprehension, so by Reg, it has an ∈-minimal element, call it y. Then y is
∈-minimal for ϕ. For if q ∈ y and ϕ(q), then q ∈ TC(u) by transitivity of
TC(u), and hence q ∈ z. But this contradicts the minimality of y. SDG

Definition 7.5. Recall the definition of the transfinite hierarchy of sets, V :

V0 = ∅
Vα+1 = P(Vα)

Vλ =
⋃

α<λ

Vα.

We write V (x) if and only if there is some α for which x ∈ Vα.

Definition 7.6 (Rank). The rank of a set x, denoted rank(x), is the least α
for which x ∈ Vα+1.

Theorem 7.7. Under ZFC, the transfinite hierarchy of sets contains all sets.
Formally,

ZFC ` ∀x.V (x).

Proof. Suppose there is some set x for which ¬V (x). Let u be the ∈-minimal
such set (by Regularity). Then for every w ∈ u, there is some α for which w ∈
Vα. Therefore, rank is a functional relation on u. Now consider sup(rank[u]) =
β; we claim that u ⊆ Vβ+1. Consider x ∈ u; by definition, β ≥ rank(x), so
x ∈ Vβ+1, since the Vα are cumulative. Therefore u ⊆ Vβ+1, a contradiction. SDG

Remark. This shows that every class which is bounded in rank is a set. Con-
versely, every class which is not bounded in rank is not a set.

We will now start in on proving some relative consistency results.

Theorem 7.8. If ZF without Regularity is consistent, then so is ZF.

Remark. We will show this by proving that from ZF without Regularity, we can
prove the “relativization” of the ZF axioms to V .

Definition 7.9. The relativization of a formula ϕ to V , denoted ϕV , is defined
as follows. All atomic formulas (∈, =) translate to themselves. (−)V commutes
past ∧, ∨, and ¬. The only interesting cases are ∀ and ∃:

[∃x.ϕ]V = ∃x.V (x) ∧ ϕV

[∀x.ϕ]V = ∀x.V (x) =⇒ ϕV
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That is, we change quantifiers into “bounded quantifiers” which have a universe
of V .

(ZF)V indicates the set of axioms of ZF, each relativized to V .

Definition 7.10. ∆0 is the smallest set of formulas containing atoms (x ∈ y or
x = y) and closed under connectives and bounded quantifiers (e.g. ∀x ∈ z.ϕ).

Definition 7.11. ϕ is absolute for M iff for all x ∈ M ,

ϕM (x) ⇐⇒ ϕ(x).

Remark. As usual, we take x ∈ M to indicate a sequence of elements of M .

Lemma 7.12. If M is transitive and ϕ is ∆0, then ϕ is absolute for M .

Proof. By structural induction on ϕ. First, if ϕ is an atom, then ϕM (x) = ϕ(x).
If the top-level constructor of ϕ is ∧, ∨, or ¬, the result follows immediately by
definition of relativization and the induction hypothesis.

Now suppose ϕ is of the form ∃x ∈ a.ϕ′, that is, ∃x.x ∈ a ∧ ϕ′. By the
induction hypothesis, we know that ϕ′ is absolute for M . Note that

ϕM = ∃x.M(x) ∧ x ∈ a ∧ ϕ′M .

[
ϕM (x) =⇒ ϕ(x).

]
Let x ∈ M , and suppose ϕM (x); we wish to show that

ϕ(x). Let y be the set that witnesses ϕM (x). Then we can show that y also
witnesses ϕ(x). We know that y ∈ a from ϕM (x). However, ϕ′ may contain
x free; we must show ϕ′(x, y). This follows from the induction hypothesis if
y ∈ M : but ϕM (x) gives us M(y).[

ϕ(x) =⇒ ϕM (x).
]

Now suppose ϕ(x), and let y be the witness. y is also
a witness of ϕM (x); the argument is similar, except we also need to show that
M(y) holds. We know that y ∈ a; but a is free in ϕ, so in ϕ(x) it has been
replaced by some element of x, which is in M by assumption. M is transitive,
so this implies that y ∈ M as well.

Finally, suppose ϕ is of the form ∀x ∈ a.ϕ′, that is, ∀x.x ∈ a ⇒ ϕ′. Then
we have

ϕM = ∀x.M(x) ⇒ x ∈ a ⇒ ϕ′M .
[
ϕM (x) =⇒ ϕ(x).

]
Omitted. (For now. Maybe.) SDG
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