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12 ZF is not finitely axiomatizable

Definition 12.1. A sequence of sets indexed by ordinals, Mα, is a cumulative
hierarchy iff

1. Mα ⊆Mα+1 ⊆ P(Mα), for all α, and

2.
⋃
α<λMα = Mλ, for lim(λ).

Remark. For example, V (the rank hierarchy) is a cumulative hierarchy, as is L
(the constructible hierarchy, to be covered later). Generally, if the sequence Mα

is a cumulative hierarchy, we write M(x) to denote the predicate ∃α.x ∈Mα.

Definition 12.2. A class of ordinals C is closed unbounded (abbreviated club)
iff

• it is closed, that is, C(λ) holds for limit ordinals λ whenever, for every
β < λ, there is some β < γ < λ with C(γ); and

• it is unbounded, that is, for every ordinal α there exists some ordinal β > α
with C(β).

Remark. A set of ordinals is club iff it is the image of a normal function.

Lemma 12.3. If C and D are closed unbounded, then so is C ∩D.

Proof. We must show that C ∩D is closed, and unbounded.

• C∩D is closed. Let λ be a limit ordinal, and suppose that for every β < λ
there is some β < γ < λ with C(γ) and D(γ). Then λ ∈ C and λ ∈ D,
hence λ ∈ C ∩D.

• C ∩D is unbounded. Let β be an ordinal, and define a sequence 〈αi〉 such
that β < α0 < α1 < . . . and α2i ∈ C, α2i+1 ∈ D. We can construct such
a sequence since C and D are unbounded. The sup of this sequence is
larger than β, and in both C and D. SDG

Lemma 12.4. For any map F which sends ordinals to ordinals, the class

C = {α | ∀β.β < α⇒ F (β) < α }

is closed unbounded.

Remark. This seems quite magical! It is not even obvious that C should be
nonempty. In some sense it asserts that infinitely many “strong limits” exist
with respect to any map F , not just α 7→ 2α.
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Proof. We must show that C is closed, and that it is unbounded.

• C is closed. Suppose lim(λ) and there is some increasing sequence ξ below
λ contained in C. Pick any β < λ. Then since ξ is increasing, and λ is a
limit ordinal, there must be some β < α < λ with α ∈ ξ, that is, α ∈ C.
But then F (β) < α < λ, so λ ∈ C.

• C is unbounded. Suppose γ is an ordinal; we wish to show there is some
δ > γ with δ ∈ C.

Define

γ0 = γ

γn+1 = 1 + sup
α<γn

{F (α)}

δ = sup
n∈ω

{γn}.

Now pick β < δ; we wish to show that F (β) < δ, from which it will follow
that δ ∈ C. By definition of δ, there is some n for which β < γn. But
then F (β) ≤ supα<γn

{F (α)} < γn+1 ≤ δ. SDG

Theorem 12.5 (Reflection principle). For every cumulative hierarchy M and
formula ϕ(x1, . . . , xn), there is a closed unbounded class C of ordinals such that
for every α ∈ C,

∀x ∈Mα.ϕ
Mα(x) ⇔ ϕM (x).

Remark. If M = V , ϕM = ϕV = ϕ under Regularity; hence every formula ϕ is
reflected by some closed unbounded class of ranks.

Definition 12.6. A theory T is reflexive if T ` Con(ϕ) for every ϕ ∈ Conseq(T )
(where Con denotes “is consistent” and Conseq(T ) denotes the set of all for-
mulas derivable in T ).

Remark. By Gödel’s second incompleteness theorem, a reflexive theory (which
is strong enough for the theorem to apply) can’t be finitely axiomatizable. If it
were, there would be some formula (the conjunction of the axioms) from which
the entire theory would follow; but since the theory is reflexive it would then be
able to prove its own consistency.

Moreover, the reflection principle implies that ZF is reflexive, and hence is
not finitely axiomatizable. However, we will later give a more set-theoretic proof
of this using the reflection principle, without appealing to Gödel.

Proof of Theorem 12.5. By induction on ϕ. (We may assume that ∀ and ∨ are
encoded in terms of ∃, ¬, and ∧.)

• If ϕ is an atomic formula (x1 ∈ x2 or x1 = x2) we may take C to be the
class of all ordinals. (Relativization is the identity on atomic formulas.)
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• ϕ = ¬θ. By the inductive hypothesis, there is a club class Cθ correspond-
ing to θ; we may take Cϕ = Cθ, since the condition for ϕ is equivalent to
the condition for θ.

• ϕ = θ∧ψ. If Cθ and Cψ are the club classes from the inductive hypotheses,
then Cϕ = Cθ ∩ Cψ (which is club by Lemma 12.3) reflects ϕ, since if
θMα ⇔ θM and ψMα ⇔ ψM both hold, then so does θMα ∧ ψMα ⇔
θM ∧ ψM , which is equivalent to (θ ∧ ψ)Mα ⇔ (θ ∧ ψ)M .

• ϕ = ∃y.ζ(x, y); let Cζ reflect ζ(x, y) by the inductive hypothesis.

Now define G(x) to be the least α such that there is some y ∈ Mα with
ζM (x, y), or 0 if there is no such α. In other words, for a given x, G(x) is
the smallest rank that reflects ϕ for that particular x.

Furthermore, define

F (β) = sup{G(x) | x ∈Mβ }.

Now, we claim that Cϕ = Cζ∩{α | lim(α) }∩{α | ∀β.β < α⇒ F (β) < α }
satisfies the requirements of the reflection principle. Note that Cϕ is club
by Lemmas 12.3 and 12.4.

It remains only to show that Cϕ reflects ϕ, that is, for every α ∈ Cϕ,

∀x ∈Mα.(∃y.ζ(x, y))Mα ⇔ (∃y.ζ(x, y))M .

So, suppose α ∈ Cϕ and x ∈Mα.

(⇒) We are given (∃y.ζ(x, y))Mα , that is, there is some y ∈Mα such that
ζMα(x, y) holds. Clearly y, x ∈ M , and since α ∈ Cζ , we conclude that
ζM (x, y) holds as well.

(⇐) We have (∃y.ζ(x, y))M , that is, there is some y ∈ M such that
ζM (x, y); we wish to show that there is some y′ ∈Mα such that ζMα(x, y′).

Since α ∈ Cϕ, it is a limit ordinal, and therefore there is some β < α with
x ∈ Mβ (this follows from the definition of a cumulative hierarchy and
the fact that x is finite). Furthermore, G(x) ≤ F (β) < α. The existence
of y implies that G(x) 6= 0, so there is some y′ ∈ MG(x) ⊆ Mα such that
ζM (x, y′) holds. Since α ∈ Cζ , this implies that ζMα(x, y′) holds as well.

SDG

Theorem 12.7. There is no formula ϕ such that Z+ϕ is consistent and extends
ZF.

Remark. Z here indicates ZF without Replacement; the above theorem shows
that the infinite axiom schema of Replacement cannot be replaced by a finite
one.
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Proof. If Z + ϕ extends ZF, then it derives the Reflection Principle, and in
particular there is some least rank α that reflects ϕ and is a limit ordinal greater
than ω (every club class contains arbitrarily large limit ordinals). That is,

Z + ϕ ` ∃α. lim(α) ∧ ω < α ∧ ϕVα ∧ (∀β < α.¬(ϕVβ ∧ lim(β) ∧ ω < β)).

But recall that Vα is a model of Z for every limit ordinal α greater than ω, so
if γ is the least α whose existence is proven above, then

Vγ |= ∃α. lim(α) ∧ ω < α ∧ ϕVα .

But this is a contradiction, since all the involved notions are absolute for Vγ ,
and so any element of Vγ satisfying the above would contradict the minimality
of γ. However, to see the absoluteness of the above predicates will require some
additional technical tools. To be continued. (Maybe.)

SDG
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